Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boşneag, Ana

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Establishing the Dependence of Output Parameters Depending on Local Process Conditions for Friction Stir Welding of Pure Copper Plates2citations

Places of action

Chart of shared publication
Boțilă, Lia-Nicoleta
1 / 18 shared
Niţu, Eduard
1 / 1 shared
Constantin, Marius Adrian
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Boțilă, Lia-Nicoleta
  • Niţu, Eduard
  • Constantin, Marius Adrian
OrganizationsLocationPeople

article

Establishing the Dependence of Output Parameters Depending on Local Process Conditions for Friction Stir Welding of Pure Copper Plates

  • Boțilă, Lia-Nicoleta
  • Niţu, Eduard
  • Boşneag, Ana
  • Constantin, Marius Adrian
Abstract

<jats:p>Welding copper and its alloys is usually difficult to achieve by conventional fusion welding processes because of high thermal diffusivity of the copper, which is at least 10 times higher than most steel alloys, in addition to this, there are the well-known disadvantages of conventional fusion welding represented by necessity of using alloying elements, a shielding gas and a clean surface. To overcome these inconveniences, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is being explored as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (TIG) which generates and adds heat to the process. The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The process parameters that varied were the rotational speed of the tool [rpm] and the welding speed [mm/min] while the compressive force remained constant. The purpose of this paper is to correlate the evolution of temperature, tensile strength, elongation and microscopic aspect with the linear position on the joint (local process parameters) for each experimental case and then make comparisons between them, and to identify and present the set of process parameters that has the best mechanical properties for this material.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • experiment
  • strength
  • steel
  • copper
  • tensile strength
  • tungsten
  • diffusivity
  • joining