Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jimat, Siti Fairus

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Effects of Soaking Duration on the Properties of LSCF–SDCC for Low-Temperature SOFCcitations

Places of action

Chart of shared publication
Rahman, Hamimah Abd
1 / 25 shared
Agun, Linda
1 / 6 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Rahman, Hamimah Abd
  • Agun, Linda
OrganizationsLocationPeople

article

Effects of Soaking Duration on the Properties of LSCF–SDCC for Low-Temperature SOFC

  • Jimat, Siti Fairus
  • Rahman, Hamimah Abd
  • Agun, Linda
Abstract

Solid oxide fuel cells (SOFCs) offer the advantages of high efficiency, low pollution emission, and low processing cost. SOFC quality is strongly influenced by the preparation process. Composite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) samarium-doped ceria carbonate (SDCC) cathode for low-temperature SOFCs was developed, and the effect of sintering soaking time on the physical properties of an LSCF–SDCC composite cathode was studied. Composite cathode powders with 50 wt.% LSCF and 50 wt.% SDCC were mixed before undergoing calcination and uniaxial pressing process. The pressed samples were sintered at 600 °C and soaked at 1, 2, and 3 hr. The porosity and density results obtained by the Archimedes method showed a decrement of porosity from 24.92% to 19.62% and an increment of density from 4.03 g cm−1 to 4.15 g cm−1 under 1 hr to 3 hr of soaking time. Scanning electron microscopy reveals that the grain size of the composite cathode surface increases with increasing soaking time. X-ray diffraction results demonstrate that the diffraction angles at 33o and 59o exhibit a decreasing SDCC peak because of the increasing grain size. However, the new peak of lithium chromium oxide (Li2CrO4) appears at an angle of 21.66° for 3 hr soaking time. The findings proved that soaking time influences the microstructure of the composite cathode.

Topics
  • density
  • impedance spectroscopy
  • surface
  • grain
  • chromium
  • grain size
  • scanning electron microscopy
  • x-ray diffraction
  • composite
  • Lithium
  • porosity
  • sintering
  • Samarium