Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aboras, Mohamed M.

  • Google
  • 2
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Effect of Sintering Temperature on the Mechanical Properties of Nanostructured Ceria-Zirconia Prepared by Colloidal Process1citations
  • 2013Properties and Survival Rate of all Ceramics Dental Crown: A Review1citations

Places of action

Chart of shared publication
Yahaya, Norziha
2 / 2 shared
Amat, Noor Faeizah
1 / 1 shared
Muchtar, Andanastuti
1 / 24 shared
Azhari, Che Husna
1 / 2 shared
Ghazali, Mariyam Jamaludin
1 / 1 shared
Theng, Kai Yuan
1 / 1 shared
Andanastuti, Muchtar
1 / 1 shared
Chart of publication period
2015
2013

Co-Authors (by relevance)

  • Yahaya, Norziha
  • Amat, Noor Faeizah
  • Muchtar, Andanastuti
  • Azhari, Che Husna
  • Ghazali, Mariyam Jamaludin
  • Theng, Kai Yuan
  • Andanastuti, Muchtar
OrganizationsLocationPeople

article

Effect of Sintering Temperature on the Mechanical Properties of Nanostructured Ceria-Zirconia Prepared by Colloidal Process

  • Yahaya, Norziha
  • Amat, Noor Faeizah
  • Muchtar, Andanastuti
  • Aboras, Mohamed M.
  • Azhari, Che Husna
Abstract

<jats:p>The demand for tetragonal zirconia as a dental restorative material has been increasing because of its excellent mechanical properties and resemblance to natural tooth color, as well as its excellent biological compatibility. Cerium oxide (CeO<jats:sub>2</jats:sub>) has been added to yttria-stabilized zirconia (Y-TZP), and studies have demonstrated that the stability of the tetragonal phase can be significantly improved. Y-TZP with 5wt% CeO<jats:sub>2</jats:sub> as a second stabilizer was developed via colloidal process, followed by a suitable sintering process. According to the literature, the sintering process is the most crucial stage in ceramic processing to obtain the most homogeneous structure with high density and hardness. This study aims to investigate the effect of sintering temperature on the mechanical properties of nanostructured ceria–zirconia fabricated via colloidal processing and slip casting process with cold isostatic pressing (CIP). Twenty-five pellet specimens were prepared from ceria–zirconia with 20 nm particle size. CeO<jats:sub>2</jats:sub> nanopowder was mixed with Y-TZP nanopowder via colloidal processing. The consolidation of the powder was done via slip casting followed by CIP. The samples were divided into five different sintering temperatures with. Results from FESEM, density and hardness analyses demonstrated statistically significant increase in density and hardness as the sintering temperature increased. The hardness increased from 4.65 GPa to 14.14 GPa, and the density increased from 4.70 to 5.97 (g/cm3) as the sintering temperature increased without changing the holding time. Sintering Ce-Y-TZP at 1600 °C produced samples with homogenous structures, high hardness (14.14 GPa), and full densification with 98% of the theoretical density.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • hardness
  • ceramic
  • sintering
  • densification
  • Cerium
  • slip casting
  • isostatic pressing