People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ibrahim, Mohd Haziman Wan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022The effect of nanosilica incorporation on the mechanical properties of concrete exposed to elevated temperature: a review.citations
- 2021Mechanical Strength of Concrete by Replacement of Sand with Porcelain Waste with Addition of Superplasticizer
- 2021Mechanical properties of coconut shell-based concrete: experimental and optimisation modellingcitations
- 2021CBA Self-compacting Concrete Exposed to Water Curing
- 2020Effects of Coal Bottom Ash as Cementitious Material on Compressive Strength and Chloride Permeability of Concretecitations
- 2020Mechanical performance of concrete incorporating wheat straw ash as partial replacement of cementcitations
- 2020Establishment of Strength Prediction Equation for Concrete Containing Coal Bottom Ash Exposed to Aggressive Environment
- 2020Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins
- 2018Dynamic Mechanical Analysis of Waste Polyethylene Terephthalate Bottlecitations
- 2018A Review on Potential use of Coal Bottom Ash as a Supplementary Cementing Material in Sustainable Concrete Constructioncitations
- 2018Influence of ground coal bottom ash with different grinding time as cement replacement material on the strength of concrete
- 2018Physical and Chemical Properties of Rice Husk Ash Concrete Under Seawatercitations
- 2018Strength Properties of Rice Husk Ash Concrete Under Sodium Sulphate Attackcitations
- 2018Compressive and Flexural Strength of Concrete Containing Palm Oil Biomass Clinker with Hooked-End Steel Fiberscitations
- 2018Evaluate the Current Expressions of Compression Strength and UPV Relationship
- 2015Fresh Properties of Self-Compacting Concrete Integrating Coal Bottom Ash as a Replacement of Fine Aggregatescitations
- 2015Cementitious Materials Usage in Self-Compacting Concrete: A Reviewcitations
- 2015Pullout strength of ring-shaped waste bottle fiber concrete
- 2015The Strength Behavior of Self-Compacting Concrete Incorporating Bottom Ash as Partial Replacement to Fine Aggregatecitations
- 2014A review of microstructure properties of porous concrete pavement incorporating nano silica
Places of action
Organizations | Location | People |
---|
article
Fresh Properties of Self-Compacting Concrete Integrating Coal Bottom Ash as a Replacement of Fine Aggregates
Abstract
The influence of coal bottom ash on fresh properties of self-compacting concrete (SCC) were presented in this paper. Self-compacting concrete mixtures were produced by 0.40 water/powder ratio and coal bottom ash as a replacement of fine aggregates in varying percentages of 0%, 10%, 15%, 20%, 25% and 30%. The fresh concretes were tested for the key workability belongings of self-compacting concrete such as passing and filling abilities and segregation resistance. The fresh properties were investigated by slump flow; T500 spread time, sieve segregation and L-box test. It was found that the slump flow decreased whereas the T500 spread time increased with higher coal bottom ash content. The L-box blocking ratios changed from 0.92 to 0.65 and were mostly showed satisfactory blocking ratio. The presence of coal bottom ash improved the stability of SCC mixture and the segregation index obtained from sieve test reduced with greater bottom ash content. It can be concluding that the filling and passing ability of SCC decreased when the amount of coal bottom ash content increased. In addition, the segregation resistance index decreased with higher coal bottom ash content.