People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roslan, Mohd Nazrul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021Analysis of Sandwich Core Fiber Composite Subjected to Different Skin Reinforcement Materials
- 2020Physical and Mechanical Characterization of Kenaf Fiber Filament Wound Composite Produced Using Vacuum-Bagging and Heat-Shrink Tube Methodcitations
- 2019Axial impact crushing behaviour of thin-walled braided composite tubes: experimental comparison on basalt fibre and glass fibre reinforcementcitations
- 2018Energy absorption performance of braided basalt reinforced composite tubes under axial loads
- 2016Ballistic Impact Response of Woven Hybrid Coir/Kevlar Laminated Compositescitations
- 2014Impact of alkali treatment conditions on kenaf fiber polyester composite tensile strengthcitations
- 2013Influence of Woven and Cross-ply Laminates on Mechanical Properties of Coir Epoxy Compositecitations
- 2013Modelling Analysis on Mechanical Damage of Kenaf Reinforced Composite Plates under Oblique Impact Loadingscitations
- 2013Mercerization Treatment Conditions Effects on Kenaf Fiber Bundles Mean Diameter Variabilitycitations
- 2011Mechanical Properties Evaluation of Woven Coir and Kevlar Reinforced Epoxy Compositescitations
Places of action
Organizations | Location | People |
---|
article
Impact of alkali treatment conditions on kenaf fiber polyester composite tensile strength
Abstract
The increase of environmental issues awareness has accelerated the utilization of renewable resources like plant fiber to be used as reinforced material in polymer composite. However, there are significant problems of compatibility between the fiber and the matrix due to weakness in the interfacial adhesion of the natural fiber with the synthetic matrices. One of the solutions to overcome this problem is using chemical modification like alkali treatment. In this study, the impact of alkali treatment conditions on short randomly oriented kenaf fiber reinforced polyester matrix composite tensile strength was investigated. The experimental design setting was based on 2 level factorial experiments. Two parameters were selected during alkali treatment process which are kenaf fiber immersion duration (at 30 minute and 480 minute) and alkali solution temperature (at 40°C and 80°C). Alkali concentration was fixed at 2% (w/v) and the kenaf polyester volume fraction ratio was 10:90. The composite specimens were tested to determine the tensile properties according to ASTM D638-10 Type I. JOEL scanning electron microscopy (SEM) was used to study the microstructure of the material. The result showed that alkali treatment conditions setting do have the impact on tensile strength of short randomly oriented kenaf polyester composite. The interaction factors between immersion time and temperature was found to have prominent factors to the tensile strength of composite followed by the immersion time factor.