People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vizureanu, Petrica
Isaac Newton Group
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Computer simulations of end-tapering anchorages of EBR FRP-strengthened prestressed concrete slabs at service conditionscitations
- 2023Effect of the Sintering Mechanism on the Crystallization Kinetics of Geopolymer-Based Ceramicscitations
- 2023Effect of Sintering Mechanism towards Crystallization of Geopolymer Ceramic—A Reviewcitations
- 2022Formation and Growth of Intermetallic Compounds in Lead-Free Solder Joints: A Reviewcitations
- 2022Experimental Research on New Developed Titanium Alloys for Biomedical Applicationscitations
- 2022Controlling the Layer Thickness of Zinc Oxide Photoanode and the Dye-Soaking Time for an Optimal-Efficiency Dye-Sensitized Solar Cellcitations
- 2022Mechanical Characterization and In Vitro Assay of Biocompatible Titanium Alloyscitations
- 2021New Titanium Alloys, Promising Materials for Medical Devicescitations
- 2021Influence of 1.5 wt.% Bi on the Microstructure, Hardness, and Shear Strength of Sn-0.7Cu Solder Joints after Isothermal Annealingcitations
- 2017Synthesis, Processing, and Characterization of the Cobalt Alloys with Silicon Additioncitations
- 2014Active Screen Plasma Nitriding Efficiency and Ecologycitations
Places of action
Organizations | Location | People |
---|
article
Active Screen Plasma Nitriding Efficiency and Ecology
Abstract
<jats:p>Plasma nitriding has significant advantages: very low running costs (reduced consumption of energy and gases); optimized structure and layers; and nitriding of stainless steels. Plasma nitriding is totally safe and has no poisonous gas emissions and no negative environmental impact. However, conventional plasma nitriding has a number of well-known difficulties, including the direct application of plasma on the parts to be treated, the risk of arcing, hollow cathodes, white layers, non-homogenous batch temperature and the impossibility to mix parts of different geometries in the chamber made this technology to be almost forgotten. In the last years, due to the ecofriendly character of the technology, several atempts were made in order to establish an improvement in this technique in terms of batch damages. Active screen plasma nitriding technology is a new industrial solution that enjoys all the advantages of traditional plasma nitriding but does not have its inconveniences. A comparative study regarding quality surface and formed layer properties between conventional plasma nitriding and active screen plasma nitriding was conducted, in order to highlight the advantages that comes with this relatively new technique.</jats:p>