Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Muhammad, Wan Nur Azrina Wan

  • Google
  • 5
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2016Effect of Bottom Ash and Fly Ash as a Susceptor Material on The Properties of Aluminium Based Composites Prepared by Microwave Sintering1citations
  • 2015Effect of mixing condition on the mechanical properties of magnesium based compositescitations
  • 2012High Temperature Properties of Magnesium Based Composites Prepared by Spark Plasma Sinteringcitations
  • 2010Microstructure and Mechanical Properties of Magnesium Prepared by Spark Plasma Sintering7citations
  • 2006Effect aging treatment on tensile properties of natural fiber reinforced polyester compositescitations

Places of action

Chart of shared publication
Idris, Muhammad Firdaus Bin
1 / 1 shared
Mohamad, Nor Anuar
1 / 1 shared
Osman, Saliza Azlina
1 / 1 shared
Mutoh, Yoshiharu
3 / 4 shared
Miyashita, Yukio
2 / 2 shared
Ismail, Al Emran
1 / 15 shared
Rahim, Amirusham Abd.
1 / 1 shared
Chart of publication period
2016
2015
2012
2010
2006

Co-Authors (by relevance)

  • Idris, Muhammad Firdaus Bin
  • Mohamad, Nor Anuar
  • Osman, Saliza Azlina
  • Mutoh, Yoshiharu
  • Miyashita, Yukio
  • Ismail, Al Emran
  • Rahim, Amirusham Abd.
OrganizationsLocationPeople

article

High Temperature Properties of Magnesium Based Composites Prepared by Spark Plasma Sintering

  • Miyashita, Yukio
  • Mutoh, Yoshiharu
  • Muhammad, Wan Nur Azrina Wan
Abstract

High temperature tensile test was conducted to study high temperature properties of the magnesium based composites reinforced with SiC particulates and monolithic magnesium as well. It was found that tensile strength of monolithic magnesium and Mg-SiC composites decreased with an increase in testing temperature. While the elongation to failure both samples were increased when increasing temperature. At all testing temperature, the tensile strength of the composite sample was found to be superior compared to monolithic magnesium due to presence of SiC particulates and efficiency of spark plasma sintering process in fabrication of the composites.

Topics
  • Magnesium
  • Magnesium
  • strength
  • composite
  • tensile strength
  • sintering