Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cathcart, Chad

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Development and Application of a Thermal Microstructure Model of Laminar Cooling of an API X70 Microalloyed Steelcitations

Places of action

Chart of shared publication
Fazeli, Fateh
1 / 3 shared
Wiskel, J. Barry
1 / 1 shared
Henein, Hani
1 / 22 shared
Emakpor, Maro
1 / 1 shared
Karl, Ry
1 / 1 shared
Ivey, Doug G.
1 / 1 shared
Yu, Saber
1 / 1 shared
Zhou, Tom
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Fazeli, Fateh
  • Wiskel, J. Barry
  • Henein, Hani
  • Emakpor, Maro
  • Karl, Ry
  • Ivey, Doug G.
  • Yu, Saber
  • Zhou, Tom
OrganizationsLocationPeople

article

Development and Application of a Thermal Microstructure Model of Laminar Cooling of an API X70 Microalloyed Steel

  • Fazeli, Fateh
  • Wiskel, J. Barry
  • Henein, Hani
  • Cathcart, Chad
  • Emakpor, Maro
  • Karl, Ry
  • Ivey, Doug G.
  • Yu, Saber
  • Zhou, Tom
Abstract

<jats:p>A thermal microstructure model of laminar cooling of X70 microalloyed steel skelp was developed to predict the effect of the laminar cooling temperature profile on the through thickness skelp microstructure. Plant trials using infrared video imaging were undertaken to establish the laminar cooling conditions prevalent in the industrial cooling system. The infrared video temperature measurements were used to develop a finite element thermal model of the skelp transiting the entire laminar cooling system. Dilatometer testing of the X70 steel with cooling rates ranging from 1 °C/s to 120 °C/s was undertaken to develop the CCT curve and to quantify austenite decomposition. The predicted thermal profile from the finite element model and the phase transformation behaviour were combined into a thermal microstructural model capable of predicting the phases that would develop through the skelp thickness as a function of the laminar cooling profile. The predicted through thickness microstructures were verified from electron backscattered diffraction (EBSD) phase analysis of industrially produced API X70 skelp.</jats:p>

Topics
  • microstructure
  • phase
  • steel
  • electron backscatter diffraction
  • decomposition