People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pierik, Rens
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024A state-rate model for the transient wall slip effects in ply-ply friction of UD C/PAEK tapes in melt
- 2024Polymer-metal interactions and their effect on tool-ply friction of C/PEKK in meltcitations
- 2023Experimental setup and method for the characterization of ply-ply adhesion for fiber-reinforced thermoplastics in meltcitations
- 2023Modeling the effect of temperature and pressure on the peak and steady-state ply-ply friction response for UD C/PAEK tapescitations
- 2023A new setup to measure friction of thermoplastic composite tape in melt
- 2023Corrigendum to “Prediction of the peak and steady-state ply–ply friction response for UD C/PAEK tapes” [Compos. Part A
- 2022Formability Experiments for Unidirectional Thermoplastic Compositescitations
- 2022On the Effect of Release Agent and Heating Time on Tool-Ply Friction of Thermoplastic Composite in Meltcitations
- 2022From no-slip to full slip in the matrix-fiber interface: a state-rate approach
- 2022Prediction of the peak and steady-state ply-ply friction response for UD C/PAEK tapescitations
- 2021Is Wall Slip causing the Transient Ply-ply Friction Response of UD C/PEEK?
- 2021On the origin of start-up effects in ply-ply friction for UD fiber-reinforced thermoplastics in meltcitations
- 2020The influence of physical ageing on the in-plane shear creep compliance of 5HS C/PPScitations
Places of action
Organizations | Location | People |
---|
document
Formability Experiments for Unidirectional Thermoplastic Composites
Abstract
Reliable composite forming experiments are required to characterize composite formability, to aid material development, and to validate process simulations models. Due to practical reasons, however, typically a limited amount of forming configurations is studied. The objective of this study is, therefore, to develop a methodology for obtaining controlled forming results in a wide range of configurations. Press forming experiments using a dome geometry were used to explore the formability of two commercial unidirectional thermoplastic composite materials. A variety of forming configurations was employed by changing the blank dimensions and layup. The observation of wrinkling defects was simplified by leaving an additional 3 mm tool gap. Blank width and layup had the most influence on the wrinkling severity, followed by blank thickness and length. Quasi-isotropic layups were found to produce wrinkles in nearly all cases, confirming a difficulty in general to form double curved parts. The size and number of wrinkles in these layups were found to change with the stacking sequence. Cross-ply layups showed better formability, but significant wrinkles were still observed depending on the orientation of the blank relative to the layup. The formability experiments using a dome geometry provided a reliable methodology for controlled forming results in many configurations using a generic toolset. Additionally, a comprehensive comparison of formability for two commercial thermoplastic UD materials in a variety of scenarios was provided.