Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Basry, Nur Adila Amira

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Surface Modification of Ti-Nb Alloy in Alkaline Solution to Enhance Bioactivity1citations

Places of action

Chart of shared publication
Hussain, Zuhailawati
1 / 3 shared
Darham, Widyani
1 / 3 shared
Shariff, Khairul Anuar
1 / 4 shared
Anis, Ahmad Lutfi
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Hussain, Zuhailawati
  • Darham, Widyani
  • Shariff, Khairul Anuar
  • Anis, Ahmad Lutfi
OrganizationsLocationPeople

article

Surface Modification of Ti-Nb Alloy in Alkaline Solution to Enhance Bioactivity

  • Hussain, Zuhailawati
  • Darham, Widyani
  • Shariff, Khairul Anuar
  • Basry, Nur Adila Amira
  • Anis, Ahmad Lutfi
Abstract

<jats:p>Titanium alloys, especially titanium-niobium alloy have been reported as a potential biomaterial with good biocompatibility and non-toxicity. However, there is a lack of studies in alkaline surface treatment of new beta titanium alloy fabricated by vacuum arc melting (VAM) and powder metallurgy (PM) technique with high addition of niobium percentage. The purpose of this research was to examine the feasibility of surface modification on new beta Ti-40wt% Nb alloy in sodium hydroxide solution in order to form bioactive alkaline titanate layer. The characterization involved in this study is X-ray diffraction analysis (XRD), scanning electron microscope (SEM), microhardness, density measurement and optical microscope (OM). Development of amorphous alkaline titanate layer consisted of titanium hydrate, sodium titanate and oxide mixture of titanium oxide, niobium, niobium oxide were revealed by XRD. SEM shows titanate hydrogel layer form on Ti alloy PM thicker than on Ti alloy VAM. Microhardness and density measurement for Ti alloy VAM is greater than Ti alloy PM. OM shows porous surface on Ti alloy PM compare to VAM. This research suggests that the formation of sodium titanate layer on the surface of Ti-Nb alloy enhance bioactivity with better osteointegration and present higher formation of apatite which is crucial for the desired biomedical implant.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • amorphous
  • scanning electron microscopy
  • x-ray diffraction
  • Sodium
  • titanium
  • titanium alloy
  • toxicity
  • biocompatibility
  • niobium
  • bioactivity
  • vacuum arc melting
  • niobium alloy