Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dulog, Jay C.

  • Google
  • 2
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Synthesis and Characterization of AuNP/TiO<sub>2</sub> Hybrid Nanoparticles for Possible Photocatalytic Application1citations
  • 2024Synthesis and Characterization of Hierarchical Structure Au/ZnO Nanocomposites for Possible Photocatalytic Applications1citations

Places of action

Chart of shared publication
Delicana, Jared Deve P.
2 / 2 shared
Lubguban, Arnold A.
2 / 4 shared
Unabia, Romnick
2 / 2 shared
Capangpangan, Rey Y.
2 / 9 shared
Sayson, Noel Lito B.
2 / 5 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Delicana, Jared Deve P.
  • Lubguban, Arnold A.
  • Unabia, Romnick
  • Capangpangan, Rey Y.
  • Sayson, Noel Lito B.
OrganizationsLocationPeople

article

Synthesis and Characterization of Hierarchical Structure Au/ZnO Nanocomposites for Possible Photocatalytic Applications

  • Dulog, Jay C.
  • Delicana, Jared Deve P.
  • Lubguban, Arnold A.
  • Unabia, Romnick
  • Capangpangan, Rey Y.
  • Sayson, Noel Lito B.
Abstract

<jats:p>Semiconductor-metal nanocomposites are actively investigated for their diverse applications in emerging fields such as photocatalysis, photovoltaics, and chemical sensing. In this study, we synthesized ZnO semiconductor nanoparticles using a chemical bath deposition method with ZnSO<jats:sub>4</jats:sub>·7H<jats:sub>2</jats:sub>O and controlled NH<jats:sub>4</jats:sub>OH concentrations, facilitated by an anionic surfactant to enable the attachment of Au metal nanoparticles. Au nanoparticles were prepared from HAuCl<jats:sub>4</jats:sub> using citrate as a reducing agent, and metal oxide was rapidly introduced to ensure a well-defined nanocomposite with a fixed 75 w/v% composition. Fast Fourier transform spectroscopy (FTIR) and Ultra-visible (UV-Vis) spectroscopy were used to provide clear evidence of Au/ZnO nanocomposite formation through the presence of distinctive peaks around 359nm and 518nm, with Dynamic Light Scattering (DLS) revealing contrasting average sizes for ZnO and Au, highlighting the significant size difference in the Au/ZnO nanocomposites. Additionally, the scanning electron microscopy – energy dispersive x-ray (SEM-EDS) analysis confirmed the successful presence of ZnO nanoparticles. These findings offer insights into the potential applications and unique properties of Au/ZnO nanocomposites for possible photocatalytic applications.</jats:p>

Topics
  • nanoparticle
  • Deposition
  • nanocomposite
  • scanning electron microscopy
  • semiconductor
  • Energy-dispersive X-ray spectroscopy
  • surfactant
  • dynamic light scattering