Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sahu, Khemraj

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Development of Graphitic 2024 Al Alloy by Mechanical Alloyingcitations

Places of action

Chart of shared publication
Kumar, Sanjeev
1 / 20 shared
Singh, Raj Bahadur
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kumar, Sanjeev
  • Singh, Raj Bahadur
OrganizationsLocationPeople

article

Development of Graphitic 2024 Al Alloy by Mechanical Alloying

  • Kumar, Sanjeev
  • Singh, Raj Bahadur
  • Sahu, Khemraj
Abstract

<jats:p>In this study, the 2024 Al powder with different weight fractions of graphite is mechanically milled using a high-energy ball mill for 3 hours each in the nitrogen environment. The milled powder is compacted at an elevated temperature. X-ray diffraction is used to phase analysis of milled powder as well as compacted specimens. Optical microscopy is used for microstructural analysis and hardness measurements are done for the evaluation of mechanical properties. The hot compacted specimens are also tested for their wear properties. Results show that there is no new phase formed during mechanical milling. But, after hot compaction of the milled powder, Al<jats:sub>2</jats:sub>Cu formed due to precipitation. No reaction is observed between the aluminum and the carbon (graphite) after milling as well as hot compaction. Microstructures of all hot compacted specimens are not showing pores, which, signifies full density after compaction. The formation of Al<jats:sub>4</jats:sub>C<jats:sub>3</jats:sub> is not observed at any stage of processing. Therefore, graphite is uniformly distributed in all specimens, and the same is observed at grain boundaries of α-Al grains in the microstructures. Hardness increases with the addition of 1 wt.% graphite but it decreases with a further increase in graphite. The wear resistance of 2024 Al with 1 wt% graphite is the highest among all the compositions. The high hardness and wear resistance of 2024Al with 1 wt% graphite is the consequence of precipitation of Al<jats:sub>2</jats:sub>Cu during hot compaction and the presence of graphite which creates hindrances in the metal matrix. The presence of free graphite in the vicinity of grain boundaries acts as a solid lubricant which improves wear resistance of 2024 Al.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • Carbon
  • grain
  • phase
  • x-ray diffraction
  • grinding
  • aluminium
  • milling
  • wear resistance
  • Nitrogen
  • hardness
  • precipitation
  • optical microscopy