People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Olakiitan, Adeniyi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Variability Analysis of Compressive and Flexural Performance of Coconut Fibre Reinforced Self-Compacting Concrete
Abstract
<jats:p>Self-compacting concrete (SCC) is a high-performance material that flows freely and consolidates without segregation or bleeding. This study investigated the effectiveness of incorporating coconut fiber into SCC to improve its strength and toughness. Three mixtures with coconut fiber inclusions of 0.2%, 0.4%, and 0.6% by weight of cement were used. The addition of coconut fiber reduced the workability and passing ability of the concrete, but all mixes met the SCC specification. The CFRSCC with 0.2% had the highest compressive and flexural strengths. The study concluded that adding 0.2% coconut fiber to SCC can increase its strength. The use of natural fibers like coconut can enhance the properties of concrete and could be an alternative to synthetic fibers, especially in regions where natural fibers are locally available and cost-effective.</jats:p>