Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cumbunga, Judice

  • Google
  • 3
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Modeling and optimization of the thermomechanical behavior of metal partsobtained by sintering : Numerical and experimental approach. ; Modélisation et optimisation du comportement thermomécanique des pièces métalliques obtenues par frittage : Approche numérique et expérimentale.citations
  • 2023Numerical modeling of the solid-state sintering at the microstructural level: Multiphysics approach and application to metal additive manufacturingcitations
  • 2023Numerical Modeling and Simulation of Microstructure Evolution during Solid-State Sintering: Multiphysics Approach1citations

Places of action

Chart of shared publication
Chamoret, Dominique
2 / 3 shared
Abboudi, Said
2 / 2 shared
Gomes, Samuel
1 / 3 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Chamoret, Dominique
  • Abboudi, Said
  • Gomes, Samuel
OrganizationsLocationPeople

article

Numerical Modeling and Simulation of Microstructure Evolution during Solid-State Sintering: Multiphysics Approach

  • Cumbunga, Judice
  • Chamoret, Dominique
  • Abboudi, Said
Abstract

<jats:p>A multiphysics numerical approach based on a coupling of heat conduction equation, mechanical field (effect of gravity), and phase-field equations is proposed as an alternative to predict the microstructure evolution of 316L stainless steel during the pressureless solid-state sintering process. In this context, a numerical model based on the finite element method has shown to be suitable for evaluating the impact of the thermal field, as the activation force of the sintering process, on the microstructure field evolution and, in turn, the impact of the evolution of phase field variables on the material properties. The model was validated by comparison with literature results and applied to simulate the microstructure evolution for different sintering temperatures and particle sizes to evaluate the influence of these parameters on microstructure evolution. The results proved that model can be used to analyze the microstructure evolution, both from a quantitative and quality point of view, which makes it suitable for evaluating the impact of sintering parameters on material properties.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • stainless steel
  • phase
  • simulation
  • activation
  • sintering