Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liddiard, Joseph

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022On the Effect of Release Agent and Heating Time on Tool-Ply Friction of Thermoplastic Composite in Melt1citations

Places of action

Chart of shared publication
Pierik, Rens
1 / 13 shared
Wijskamp, Sebastiaan
1 / 58 shared
Grouve, Wouter J. B.
1 / 78 shared
Akkerman, Remko
1 / 423 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Pierik, Rens
  • Wijskamp, Sebastiaan
  • Grouve, Wouter J. B.
  • Akkerman, Remko
OrganizationsLocationPeople

document

On the Effect of Release Agent and Heating Time on Tool-Ply Friction of Thermoplastic Composite in Melt

  • Pierik, Rens
  • Wijskamp, Sebastiaan
  • Liddiard, Joseph
  • Grouve, Wouter J. B.
  • Akkerman, Remko
Abstract

Process simulation software for hot press forming requires accurate material characterization. One of these characterization experiments concerns tool-ply friction, for which the methodology is well established. However, the experimental conditions are often not representative for the actual forming process. This research focuses on the effect of release agent and heating time on the toolply friction response. UD carbon fiber-reinforced PEKK was forced to slide against metal foils in a benchmarked friction tester at different rates, normal pressures and temperatures. The typical friction response, exhibiting a shear stress overshoot followed by a steady-state region, did not qualitatively change when applying a Marbocote 227CEE release agent on the metal foils. However, the overshoot reduced and, in case of a high normal pressure of 45 kPa, the steady-state response lowered as well. Thus, release agent should be included for a more accurate characterization of tool-ply friction. A longer heating time resulted in a large increase of the overshoot, whereas the steady-state response was nearly unaffected. The same observation was made when testing at a higher temperature, which may suggest that the increase in overshoot is due to increased adhesive bonding. Moreover, a change in adhesive bonding could also explain the lower overshoot observed when a release agent was applied, indicating adhesion as a key mechanism for tool-ply friction.

Topics
  • impedance spectroscopy
  • Carbon
  • experiment
  • simulation
  • melt
  • composite
  • forming
  • thermoplastic