People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pierik, Rens
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024A state-rate model for the transient wall slip effects in ply-ply friction of UD C/PAEK tapes in melt
- 2024Polymer-metal interactions and their effect on tool-ply friction of C/PEKK in meltcitations
- 2023Experimental setup and method for the characterization of ply-ply adhesion for fiber-reinforced thermoplastics in meltcitations
- 2023Modeling the effect of temperature and pressure on the peak and steady-state ply-ply friction response for UD C/PAEK tapescitations
- 2023A new setup to measure friction of thermoplastic composite tape in melt
- 2023Corrigendum to “Prediction of the peak and steady-state ply–ply friction response for UD C/PAEK tapes” [Compos. Part A
- 2022Formability Experiments for Unidirectional Thermoplastic Compositescitations
- 2022On the Effect of Release Agent and Heating Time on Tool-Ply Friction of Thermoplastic Composite in Meltcitations
- 2022From no-slip to full slip in the matrix-fiber interface: a state-rate approach
- 2022Prediction of the peak and steady-state ply-ply friction response for UD C/PAEK tapescitations
- 2021Is Wall Slip causing the Transient Ply-ply Friction Response of UD C/PEEK?
- 2021On the origin of start-up effects in ply-ply friction for UD fiber-reinforced thermoplastics in meltcitations
- 2020The influence of physical ageing on the in-plane shear creep compliance of 5HS C/PPScitations
Places of action
Organizations | Location | People |
---|
document
On the Effect of Release Agent and Heating Time on Tool-Ply Friction of Thermoplastic Composite in Melt
Abstract
Process simulation software for hot press forming requires accurate material characterization. One of these characterization experiments concerns tool-ply friction, for which the methodology is well established. However, the experimental conditions are often not representative for the actual forming process. This research focuses on the effect of release agent and heating time on the toolply friction response. UD carbon fiber-reinforced PEKK was forced to slide against metal foils in a benchmarked friction tester at different rates, normal pressures and temperatures. The typical friction response, exhibiting a shear stress overshoot followed by a steady-state region, did not qualitatively change when applying a Marbocote 227CEE release agent on the metal foils. However, the overshoot reduced and, in case of a high normal pressure of 45 kPa, the steady-state response lowered as well. Thus, release agent should be included for a more accurate characterization of tool-ply friction. A longer heating time resulted in a large increase of the overshoot, whereas the steady-state response was nearly unaffected. The same observation was made when testing at a higher temperature, which may suggest that the increase in overshoot is due to increased adhesive bonding. Moreover, a change in adhesive bonding could also explain the lower overshoot observed when a release agent was applied, indicating adhesion as a key mechanism for tool-ply friction.