Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Merino-Millán, David

  • Google
  • 2
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Hardness and Young's modulus evolution of low-power plasma sprayed Inconel 625 coatings exposed to high temperaturescitations
  • 2022Evaluating the Corrosion Resistance of Inconel 625 Coatings, Processed by Compact Plasma Spray, for Applications in Concentrating Solar Power Plants6citations

Places of action

Chart of shared publication
Poza, Pedro
1 / 7 shared
Garrido-Maneiro, Miguel Ángel
1 / 3 shared
Múnez, Claudio J.
1 / 1 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Poza, Pedro
  • Garrido-Maneiro, Miguel Ángel
  • Múnez, Claudio J.
OrganizationsLocationPeople

article

Evaluating the Corrosion Resistance of Inconel 625 Coatings, Processed by Compact Plasma Spray, for Applications in Concentrating Solar Power Plants

  • Merino-Millán, David
Abstract

<jats:p>Thermal energy storage (TES) systems have paramount importance in the design of Concentrating Solar Power (CSP) plants. TES systems allow storing the energy collected from solar radiation as heat energy in a thermal fluid and, in that way, extending the energy duration period of the plant and making the produced electricity dispatchable, depending on the actual demand and not only on the availability of the sun. The thermal fluids, synthetic oils, or molten salts, usually operate at temperatures from 500°C up to 800°C. The harsh operative conditions bring out issues related to the compatibility with the construction materials of CSP components, i.e., carbon and stainless steel. Coating of low-alloy structural steel with high-resistant materials has been addressed as a promising solution for mitigating the corrosion in TES system components. Compact plasma spray process was used to deposit Inconel 625 alloy onto T22 carbon steel coupons. Nitrate salts mixture, 60%NaNO<jats:sub>3</jats:sub>-40KNO<jats:sub>3</jats:sub>, commonly employed in CSP systems as operative and thermal storage fluid was used as corrosion medium. The tests were conducted by immersing coated and uncoated samples in molten salts at 500°C for 1, 3 7, and 14 days to assess the corrosion behavior of the In625 coatings. After 24 hours of exposition to molten nitrate salts, the T22 surface showed a pronounced oxidized layer having a thickness of approximately 20 µm. This layer is mainly composed of oxygen, iron, and chromium, which are the main constituents of carbon steel, with a few traces of sodium and potassium derived from the reaction of salts with the steel. Inconel 625, on the other hand, showed the formation of very thin scales of corrosion products localized only on the surface of the sample. Longer exposition is expected to produce a more pronounced degradation of uncoated steel, but barely affect the Inconel 625 coating</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • stainless steel
  • corrosion
  • chromium
  • Oxygen
  • Sodium
  • Potassium
  • iron
  • concentrating