People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kruppke, Iris
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Potentials of polyacrylonitrile substitution by lignin for continuous manufactured lignin/polyacrylonitrile-blend-based carbon fiberscitations
- 2023Nachhaltige Herstellung hochreiner Chitosan- filamentgarne mit hohem Leistungs- und Funktionsvermogen
- 2023Development of fiber-based piezoelectric sensors for the load monitoring of dynamically stressed fiber-reinforced compositescitations
- 2022Protective Coating for Electrically Conductive Yarns for the Implementation in Smart Textilescitations
- 2022Metallization of polyimide materials for usage in aerospace
- 2022Metallization of polyimide materials for usage in aerospace
- 2022Metallisierung von Polyimidmaterialien zur Anwendung in der Luft- und Raumfahrt
- 2021Development of an Elastic, Electrically Conductive Coating for TPU Filamentscitations
- 2021Novel Repair Procedure for CFRP Components Instead of EOLcitations
- 2020Matrix Decomposition of Carbon-Fiber-Reinforced Plastics via the Activation of Semiconductorscitations
- 2016Adhesion problematics and curing kinetics in a thermosetting matrix for stitch-free non-crimp fabriccitations
- 2016Effects of (Oxy-)Fluorination on Various High-Performance Yarnscitations
Places of action
Organizations | Location | People |
---|
article
Protective Coating for Electrically Conductive Yarns for the Implementation in Smart Textiles
Abstract
<p>The Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop (CeTI)” [1] deals with developments and inventions concerning smart devices used in many fields, e.g. industry 4.0, medicine and skill learning. These kind of applications require smart devices, sensors, actors and conductive structures. Textile structures address these applications by meeting requirements such of being flexible, adaptable and wearable. Within this paper, the development of a protective coating for electrically conductive (EC) yarns is captured. These EC yarns are nowadays often used for smart textile applications. One challenge in their application is the integration into textile structures. Often, the handling and usage of EC yarns leads on the one hand to damages on the surface of the yarn and on the other hand to reduced electromechanically characteristics. This paper aims to characterize these EC yarns in regard to develop a suitable protective coating based on polypropylene (PP). To achieve this development, an extensive characterization of the EC yarns as well as the protective coating itself is important. The surface free energy (SFE), the topographical and the chemical characteristics are necessary for developing a suitable protective coating. However, the yarns are characterized before and after implementation into the textile structure and furthermore after the coating respectively with the developed finish.</p>