Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Perdahcioglu, Emin Semih

  • Google
  • 10
  • 14
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2022Periodic Homogenization in Crystal Plasticitycitations
  • 2020An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels16citations
  • 2019Prediction of void growth using gradient enhanced polycrystal plasticity1citations
  • 2018Investigation of microstructural features on damage anisotropycitations
  • 2018Investigation of anisotropic damage evolution in dual phase steelscitations
  • 2017Implementation and application of a gradient enhanced crystal plasticity model4citations
  • 2017Numerical investigation of void growth with respect to lattice orientation in bcc single crystal structurecitations
  • 2016Constitutive modeling of hot horming of austenitic stainless steel 316LN by accounting for recrystallization in the dislocation evolutioncitations
  • 2013Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steels3citations
  • 2013Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texture34citations

Places of action

Chart of shared publication
Soyarslan, Celal
2 / 22 shared
Van Den Boogaard, Ton
10 / 135 shared
Mirhosseini, Shahrzad
1 / 3 shared
Asik, Emin Erkan
6 / 10 shared
Bargmann, S.
1 / 30 shared
Kooiker, Harmen
1 / 2 shared
Hilkhuijsen, P.
2 / 3 shared
Bor, Teunis Cornelis
2 / 12 shared
Geijselaers, Hubert
2 / 31 shared
Geijselaers, H. J. M.
1 / 7 shared
Bor, T. C.
1 / 18 shared
Vd Boogaard, A. H.
1 / 1 shared
Perdahcioǧlu, E. S.
1 / 2 shared
Akkerman, Remko
1 / 423 shared
Chart of publication period
2022
2020
2019
2018
2017
2016
2013

Co-Authors (by relevance)

  • Soyarslan, Celal
  • Van Den Boogaard, Ton
  • Mirhosseini, Shahrzad
  • Asik, Emin Erkan
  • Bargmann, S.
  • Kooiker, Harmen
  • Hilkhuijsen, P.
  • Bor, Teunis Cornelis
  • Geijselaers, Hubert
  • Geijselaers, H. J. M.
  • Bor, T. C.
  • Vd Boogaard, A. H.
  • Perdahcioǧlu, E. S.
  • Akkerman, Remko
OrganizationsLocationPeople

document

Periodic Homogenization in Crystal Plasticity

  • Soyarslan, Celal
  • Perdahcioglu, Emin Semih
  • Van Den Boogaard, Ton
  • Mirhosseini, Shahrzad
Abstract

<p>In this paper, macroscopic behavior obtained from crystal plasticity finite element simulations of irregularly shaped 3D and 2D volume elements (VEs) are compared. These morphologically periodic VEs are generated using the open-source software library Voro++. Periodic boundary conditions are utilized to homogenize the material response employing a prescribed macroscopic deformation gradient tensor. To accelerate the assignment of periodic boundary conditions, a conformal mesh is employed by which periodic couples of faces on the hull of the volume element have identical mesh patterns. In the simulations, plane strain conditions are assumed, which means that the average thickness strain in 3D VEs is set to zero. However, grains are allowed to strain in the thickness direction. In the case of 2D VEs, plane strain elements are used. The principal goal of this comparison is to evaluate the accuracy of 2D VEs simulations. In the current study, two kinds of 2D VEs are generated: 1) Slicing 3D VEs normal to the thickness direction, 2) Separately generating 2D VEs. The first method corresponds to sectioning 3D microstructures using EBSD. This approach is generally used as an assumed more accurate alternative to 2D VEs. Based on the results, there is a large gap between the flow curves of 2D and 3D VEs. Additionally, 2D sectioning of 3D VEs does not necessarily end up in higher precision in material behavior predictions.</p>

Topics
  • impedance spectroscopy
  • grain
  • simulation
  • plasticity
  • electron backscatter diffraction
  • homogenization
  • crystal plasticity
  • sectioning