Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mirhosseini, Shahrzad

  • Google
  • 3
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Periodic Homogenization in Crystal Plasticitycitations
  • 2021On the multiscale analysis of a two phase material: crystal plasticity versus mean fieldcitations
  • 2021Self-consistent, polycrystal rate-independent crystal plasticity modeling for yield surface determinationcitations

Places of action

Chart of shared publication
Soyarslan, Celal
1 / 22 shared
Perdahcioglu, Emin Semih
1 / 10 shared
Van Den Boogaard, Ton
3 / 135 shared
Perdahcioglu, Semih
2 / 2 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Soyarslan, Celal
  • Perdahcioglu, Emin Semih
  • Van Den Boogaard, Ton
  • Perdahcioglu, Semih
OrganizationsLocationPeople

document

Periodic Homogenization in Crystal Plasticity

  • Soyarslan, Celal
  • Perdahcioglu, Emin Semih
  • Van Den Boogaard, Ton
  • Mirhosseini, Shahrzad
Abstract

<p>In this paper, macroscopic behavior obtained from crystal plasticity finite element simulations of irregularly shaped 3D and 2D volume elements (VEs) are compared. These morphologically periodic VEs are generated using the open-source software library Voro++. Periodic boundary conditions are utilized to homogenize the material response employing a prescribed macroscopic deformation gradient tensor. To accelerate the assignment of periodic boundary conditions, a conformal mesh is employed by which periodic couples of faces on the hull of the volume element have identical mesh patterns. In the simulations, plane strain conditions are assumed, which means that the average thickness strain in 3D VEs is set to zero. However, grains are allowed to strain in the thickness direction. In the case of 2D VEs, plane strain elements are used. The principal goal of this comparison is to evaluate the accuracy of 2D VEs simulations. In the current study, two kinds of 2D VEs are generated: 1) Slicing 3D VEs normal to the thickness direction, 2) Separately generating 2D VEs. The first method corresponds to sectioning 3D microstructures using EBSD. This approach is generally used as an assumed more accurate alternative to 2D VEs. Based on the results, there is a large gap between the flow curves of 2D and 3D VEs. Additionally, 2D sectioning of 3D VEs does not necessarily end up in higher precision in material behavior predictions.</p>

Topics
  • impedance spectroscopy
  • grain
  • simulation
  • plasticity
  • electron backscatter diffraction
  • homogenization
  • crystal plasticity
  • sectioning