Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Havinga, Jos

  • Google
  • 5
  • 6
  • 6

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Computing Sheet Rolling Instabilities with a Shell Finite Element Modelcitations
  • 2023Asymptotic homogenization in the determination of effective intrinsic magnetic properties of composites3citations
  • 2022Asymptotic Homogenization in the Determination of Effective Intrinsic Magnetic Properties of Compositescitations
  • 2022Discontinuous Galerkin FEM with Hot Element Addition for the Thermal Simulation of Additive Manufacturingcitations
  • 2016The effect of tooling deformation on process control in multistage metal forming3citations

Places of action

Chart of shared publication
Cometa, A.
1 / 2 shared
Van Den Boogaard, Ton
5 / 135 shared
Geijselaers, Hubert
2 / 31 shared
Soyarslan, Celal
2 / 22 shared
Abelmann, Leon
2 / 3 shared
Nijhuis, Björn
1 / 3 shared
Chart of publication period
2023
2022
2016

Co-Authors (by relevance)

  • Cometa, A.
  • Van Den Boogaard, Ton
  • Geijselaers, Hubert
  • Soyarslan, Celal
  • Abelmann, Leon
  • Nijhuis, Björn
OrganizationsLocationPeople

article

Discontinuous Galerkin FEM with Hot Element Addition for the Thermal Simulation of Additive Manufacturing

  • Havinga, Jos
  • Van Den Boogaard, Ton
  • Geijselaers, Hubert
  • Nijhuis, Björn
Abstract

Despite its promising advantages, the application of directed energy deposition (DED) to produce large metal parts is hindered by challenges inherent to the process. Undesired residual stresses, distortions and heterogeneous material properties mainly originate from a part’s thermal history. Fast part-scale thermal models therefore facilitate improved applicability of DED by enabling the prediction and mitigation of these unwanted effects. In this work, the efficiency of a discontinuous Galerkin-based thermal model with heat input by hot element addition, is evaluated and improved to allow such fast simulations. It is found that the model permits the use of a coarse discretization around the heat source, which significantly reduces simulation time while maintaining accurate solutions. It is also shown that the model naturally facilitates the use of local time stepping, which can considerably improve the efficiency of thermal additive manufacturing simulations.

Topics
  • Deposition
  • impedance spectroscopy
  • simulation
  • directed energy deposition