People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahman, Hamimah Abdul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Influence of Electrophoretic Deposition (EPD) Voltage on SOFC Interconnect Morphologycitations
- 2021Linear Shrinkage, Strength and Porosity of Alumina-Based Ceramic Foam with Corn Starch as Pore Former
- 2021Fabrication of Silica (SiO2) Foam from Rice Husk Ash (RHA): Effects of Solid Loadings
- 2021Effect of Fabrication Method on Tensile Behaviour of Polysiloxane (POS) Filled Rice Husk Silica (RHA SiO2) Compositescitations
- 2021Perovskite-Type Oxide-Based Dual Composite Cathode for Solid Oxide Fuel Cells: A Short Review
- 2019Effect of SSC Loading on the Microstructural Stability SSC-SDCC Composite Cathode as New Potential SOFC
- 2018Eco-Friendly Flame-Retardant Additives for Polyurethane Foams: A Short Reviewcitations
- 2018FTIR and XRD Evaluation of Magnesium Doped Hydroxyapatite/Sodium Alginate Powder by Precipitation Methodcitations
- 2018Effect of Milling Process and Calcination Temperature on the Properties of BSCF-SDC Composite Cathodecitations
- 2018Morphological and Physical Behaviour on the Sm0.5Sr0.5CoO3-δ/Sm0.2 Ce0.8O1.9 Incorporation with Binary Carbonate as Potential Cathode Materials for SOFCcitations
- 2018Influence of Heat Treatment and Milling Speed on Phase Stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Composite Cathode Solid Oxide Fuel Cellcitations
- 2017Effects of Milling Speed and Calcination Temperature on the Phase Stability of Ba0.5Sr0.5Co0.8Fe3-δcitations
- 2017Diversification studies on samarium strontium cobaltite regarding thermal & structural properties as based composite cathode of SOFCcitations
- 2016Preparation of Nickel Oxide-Samarium-Doped Ceria Carbonate Composite Anode Powders by Using High-Energy Ball Milling for Low-Temperature Solid Oxide Fuel Cellscitations
- 2016Ba- and La- strontium cobalt ferrite carbonate composite as cathode materials for low temperature SOFCcitations
- 2015XRD and EDS Analysis of Composite Cathode Powders LSCF-SDCC-Ag for Low Temperature Solid Oxide Fuel Cells (LTSOFC)citations
Places of action
Organizations | Location | People |
---|
article
Influence of Electrophoretic Deposition (EPD) Voltage on SOFC Interconnect Morphology
Abstract
<jats:p>Solid oxide fuel cell has become one of the interest in the sustainable energy field. In order to improve the efficiency of a solid oxide fuel cell (SOFC), the interconnect must be coated with a protective coating of (MnCO)<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> spinel coated stainless steel. Commercial manganese cobalt (MnCO)<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> was used as a protective coating on ferritic stainless steel in this study using the electrophoretic deposition (EPD) coating technique. This article examines the impact of voltage deposition towards morphological characteristics. The goals of these studies are to find the best interconnect coating parameter while experimenting with voltage deposition. The spinel coated interconnect (MnCO)<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> was studied using Elemental Energy Dispersive X-ray Spectroscopy (EDS). The surface morphology and coating thickness are examined using a Scanning Electron Microscope (SEM). X-ray diffraction (XRD) is used to determine the phase of the spinel coated interconnect. The EPD coating technique for (MnCO)<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> spinel coated interconnect is carried out in an aqueous suspension with 30V and 40V with coating durations of 20s, 30s, 40s, 50s, and 60s. By observing the deposition morphology and thickness coating at 30V and 40V, the best covering parameter for interconnect is 30V, 40s which fulfil the interconnect requirement.</jats:p>