Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Langela, Marc

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023High-Strength PPS-Polymer Composites for Hydrogen High-Pressure Applicationscitations

Places of action

Chart of shared publication
Schöbel, Michael
1 / 9 shared
Koch, Thomas
1 / 12 shared
Pöllinger, Alexander
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Schöbel, Michael
  • Koch, Thomas
  • Pöllinger, Alexander
OrganizationsLocationPeople

article

High-Strength PPS-Polymer Composites for Hydrogen High-Pressure Applications

  • Schöbel, Michael
  • Koch, Thomas
  • Pöllinger, Alexander
  • Langela, Marc
Abstract

<jats:p>Hydrogen technology can be one key for a transition to sustainable energy necessary to achieve climate targets and limit global warming to 1.5 °C since the beginning of the industrial revolution. Hydrogen as a CO<jats:sub>2</jats:sub> neutral energy carrier must replace fossil fuels from the existing natural gas grid and infrastructure to enable an environmentally friendly and circular economy in future societies. Batteries and e-fuels are practicable technologies for short term and quantitatively limited energy provision, with disadvantages including raw material demands and technologically complex transformation cycles. Utilizing advanced power-to-gas concepts, hydrogen will not only be most efficient technology in energy storage, but also allows adaption and reuse of existing energy transportation infrastructure.To provide volatile hydrogen gas in the required flow and energy densities, advanced compression technology needs to be developed inspired by conventional gas compression systems. Reciprocating piston compressors are developed for high-pressure hydrogen applications, providing high pressure levels and flow rates. Compression equipment must be designed for non-lubricated dry-running conditions, as high gas purity standards of hydrogen do not allow for oil-based lubricants to be introduced into the process gas. High-strength carbon fiber reinforced composites are developed as piston and packing ring materials to withstand extreme pressure differences under harsh thermo-mechanically loaded operation conditions.Promising candidates with high strength and wear resistance in the form of PPS-polymers, are developed with PTFE solid lubricants and different carbon fiber fractions to combine high strength, with low friction and wear, improve pressure operation range, and limit down times of hydrogen piston compressors. The current work describes tribological testing of advanced PPS-polymers with 10 to 30 wt.% carbon fibers in a high-velocity tribometer under hydrogen gas atmosphere. Supporting thermo-mechanical tests give new insights in deformation mechanisms of fiber reinforced polymer composites and allow conclusions on their applicability for hydrogen compression.</jats:p>

Topics
  • polymer
  • Carbon
  • wear resistance
  • strength
  • composite
  • Hydrogen
  • deformation mechanism