People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boțilă, Lia-Nicoleta
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2022Fracture Characteristics of AZ31B and Cu 99 Tensile Test Specimens Joined by FSW and FSW-IG Processescitations
- 2022Aspects Regarding the Operating Behavior of FSW Welding Tools
- 2022Aspects Regarding Welding of DD13 Steel by Applying the FSW Process and some Processes Derived from it
- 2020General Considerations Regarding Friction Stir Welding of some Steels Used in Important Industrial Fieldscitations
- 2020Macroscopic and microscopic analysis of friction stir welding ofpolyethylene
- 2020Considerations on the Ultimate Tensile Strength of Butt Welds of the EN AW 5754 Aluminium Alloy, Made by Friction Stir Welding (FSW)citations
- 2019Technical Characteristics of the Equipment for Friction Stir Welding (FSW), Depending on the Base Metalscitations
- 2019Research on the Welding Behavior for Alloy EN AW 5754 when Using FSW-US Hybrid Processcitations
- 2019General Aspects Concerning Possibilities of Joining by Friction Stir Welding for some of Couples of Materials Usable in the Automotive Industrycitations
- 2018New Techniques for Joining by Riveting
- 2018New Joining Techniques for the Production of the Electrical Components in the Automotive Industrycitations
- 2018Functional Layers of Aluminium Alloy on Steel Made by Alternative Friction Processes, for Elements of Metal Structurescitations
- 2018Establishing the Dependence of Output Parameters Depending on Local Process Conditions for Friction Stir Welding of Pure Copper Platescitations
- 2018Microstructural Characterization of the Friction Stir Welding (FSW) Joints from Dissimilar Metallic Aluminium - Copper Alloyscitations
- 2016Possibilities for Application of Friction Stir Welding Process to Titanium TiGr2citations
- 2016Examination of Noxious Emissions of the Welding Process “Cold Metal Transfer (CMT)”citations
- 2015Improving a Brazed Joint Structure, with a New Ecological Brass
- 2014New Ecological Technique for Soldering of Metallic Materialscitations
Places of action
Organizations | Location | People |
---|
article
Aspects Regarding Welding of DD13 Steel by Applying the FSW Process and some Processes Derived from it
Abstract
<jats:p>Due to its characteristics, DD13 steel is recommended for various applications in the automotive field (including in the manufacture of components for car bodies). The paper presents solutions proposed by ISIM Timisoara for welding of DD13 steel, as alternative solutions to conventional welding processes. One solution that has proven to be viable for joining DD13 steel is the friction stir welding process (FSW). In terms of the quality of the welded joints obtained by applying the classic FSW welding process, these welds were excellent. In an attempt to obtain other benefits, mainly related to the efficiency of the welding process, ISIM Timisoara has developed research programs for the study and application of other methods based on the FSW process principle, namely: - hybrid friction stir welding ultrasonic assisted FSW-US; - friction stir welding in inert gas environment FSW – IG. The important effects due to the application of these methods are: improving (as appropriate) the degree of plasticization of the materials to be joined and increasing the degree of mixing of the materials as result of ultrasonic assistance of the FSW welding process; improvement of the welding process by reducing the pressing forces of the tool during welding, with an effect on increasing the service life of welding tool; respectively improving the aspect of the weld and some mechanical characteristics of the welded joints (at tensile tests, respectively static bending test). The obtained results showed that the two methods derived from the classical FSW welding process, can be used in industrial applications, with important benefits.</jats:p>