People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Troschitz, Juliane
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (42/42 displayed)
- 2024In-situ CT of the clinching process – Influence of settling effects due to process interruptions
- 2024Characterization of intrinsic interfaces between fibre-reinforced composites and additively manufactured metal for designing hybrid structurescitations
- 2023Clinching and resistance spot welding of thermoplastic composites with metals using inserts as joining interfaces
- 2023Influence of plasma coating pretreatment on the adhesion of thermoplastics to metals
- 2023Kombination von Spritzgießen und Metallumformung in einem Prozess
- 2023Comparison of ex- and in-situ investigations of clinched single-lap shear specimenscitations
- 2023In-situ computed tomography and transient dynamic analysis of a single-lap shear test with a composite-metal clinch pointcitations
- 2023Joining of composites with metals using graded metal fabric interfaces
- 2023In-situ computed tomography - Analysis of a single-lap shear test with composite-metal pin joints
- 2023Investigation of the pull-out behaviour of metal threaded inserts in thermoplastic fused-layer modelling (FLM) componentscitations
- 2023Correction: Troschitz et al. Joining Processes for Fibre-Reinforced Thermoplastics: Phenomena and Characterisation. Materials 2022, 15, 5454
- 2022Approach to determine the characteristic dimensions of clinched joints by industrial X-ray computed tomography
- 2022Clinching in In Situ CT—A Novel Validation Method for Mechanical Joining Processescitations
- 2022Characterisation of lateral offsets in clinch points with computed tomography and transient dynamic analysiscitations
- 2022Review on mechanical joining by plastic deformationcitations
- 2022Development of a rivet geometry for solid self-piercing riveting of thermally loaded CFRP-metal joints in automotive constructioncitations
- 2022Warmforming flow pressing characteristics of continuous fibre reinforced thermoplastic compositescitations
- 2022Clinching of aluminum materials – Methods for the continuous characterization of process, microstructure and propertiescitations
- 2022Computed tomography investigation of the material structure in clinch joints in aluminium fibre-reinforced thermoplastic sheetscitations
- 2022Entwicklung multifunktionaler Schnittstellen zum Verbinden von FKV mit Metallen unter Nutzung etablierter Fügeverfahren
- 2022Investigations on combined in situ CT and acoustic analysis during clinchingcitations
- 2022Untersuchung zum Einfluss radioopaker Zwischenschichten bei der in-situ CT geclinchter Verbindungen
- 2021A Method for Characterization of Geometric Deviations in Clinch Points with Computed Tomography and Transient Dynamic Analysiscitations
- 2021Clinching in In-situ CT – Experimental Study on Suitable Tool Materialscitations
- 2021In situ computed tomography – Analysis of a single-lap shear test with clinch pointscitations
- 2021Clinching of thermoplastic composites and metals - a comparison of three novel joining technologiescitations
- 2021Entwicklung multifunktionaler Schnittstellen zum Verbinden von FKV mit Metallen unter Nutzung etablierter Fügeverfahren
- 2021Entwicklung und Aufbau einer automatisierten Prozesskette für die Herstellung komplexer Kunststoff-Metall-Hybridstrukturen
- 2020Joining of Thermoplastic Composites with Metals Using Resistance Element Weldingcitations
- 2020Experimental investigation of the load bearing capacity of inserts embedded in thermoplastic composites
- 2019Verfahren zum Herstellen eines Sandwichbauteils
- 2019Mit kleinen Blasen groß rauskommen
- 2018Sandwich Structures Made of Thermoplastics and Recycled Carbon Fiberscitations
- 2018ReLei - Fertigungs- und Recyclingstrategien für die Elektromobilität zur stofflichen Verwertung von Leichtbaustrukturen in Faserkunststoffverbund-Hybridbauweise
- 2018Schaumstoffe – effizient in Form gebracht
- 2018Thermoplast-Sandwichstrukturen aus recycelten C-Faserncitations
- 2018Einsatz von Halbzeugen aus rezyklierten Kohlenstofffasern in Leichtbau-Strukturanwendungen
- 2017One-shot physically foamed sandwich structures with carbon-fibre-reinforced top layers
- 2017Lasteinleitungselemente faserverbundgerecht integrieren: Leichtbaustrukturen aus Organoblechen mit eingebetteten Inserts
- 2016Herausforderungen für den Wiedereinsatz von kohlenstofffaserverstärkten Thermoplasten in der Fertigung
- 2015Rezyklatbasierte Hybridstrukturen in Faserkunststoffverbund-Sandwichbauweise
- 2014Fügesysteme für Faserverbundstrukturen mit Thermoplastmatrixcitations
Places of action
Organizations | Location | People |
---|
article
Investigations on combined in situ CT and acoustic analysis during clinching
Abstract
Clinching is a cost efficient method for joining components in series production. To assure the clinch point’s quality, the force displacement curve during clinching or the bottom thickness are monitored. The most significant geometrical characteristics of the clinch point, neck thickness and undercut, are usually tested destructively by microsectioning. However, micrograph preparation goes ahead with a resetting of elastic deformations and crack-closing after unloading. To generate a comprehensive knowledge of the clinch point’s inner geometry under load, in-situ computed tomography (CT) and acoustic testing (TDA) can be combined. While the TDA is highly sensitive to the inner state of the clinch point, it could detect critical events like crack development during loading. If such events are indicated, the loading process is stopped and a stepped in-situ CT of the following crack and deformation development is performed. In this paper, the concept is applied to the process of clinching itself, providing a detailed three-dimensional insight in the development of the joining zone. A test set-up is used which allows a stepwise clinching of two aluminium sheets EN AW 6014. Furthermore, this set-up is positioned within a CT system. In order to minimize X-ray absorption, a beryllium cylinder is used within the set-up frame and clinching tools are made from Si3N4. The actuator and sensor necessary for the TDA are integrated in the set-up. In regular process steps, the clinching process is interrupted in order to perform a TDA and a CT scan. In order to enhance the visibility of the interface, a thin tin layer is positioned between the sheets prior clinching. It is shown, that the test-set up allows a monitoring of the dynamic behaviour of the specimen during clinching while the CT scans visualize the inner geometry and material flow non-destructively.