People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliveira, Ana L.
Universidade Católica Portuguesa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2022Adenosine-loaded silk fibroin aerogel particles for wound healing
- 2022Opening new avenues for bioceramicscitations
- 2021New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofiberscitations
- 2021High efficient strategy for the production of hydroxyapatite/silk sericin nanocompositescitations
- 2020Hydroxyapatite/sericin compositescitations
- 2020High efficient strategy for the production of hydroxyapatite/silk sericin nanocomposites
- 2020Hydroxyapatite/sericin composites:a simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization processcitations
- 2019Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO2-based approachcitations
- 2019Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO 2 -based approachcitations
- 2018Combinatory approach for developing silk fibroin scaffolds for cartilage regenerationcitations
- 2017Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applicationscitations
- 2017Silk-based anisotropical 3D biotextiles for bone regenerationcitations
- 2017Core-shell silk hydrogels with spatially tuned conformations as drug-delivery systemcitations
- 2016Combinatory approach for developing silk fibroin-based scaffolds with hierarchical porosity and enhanced performance for cartilage tissue engineering applications
- 2013Evaluation of novel 3D architectures based on knitting technologies for engineering biological tissues
- 2012Aligned silk-based 3-D architectures for contact guidance in tissue engineeringcitations
- 2009Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffoldscitations
- 2005Study of the influence of β-radiation on the properties and mineralization of different starch-based biomaterialscitations
- 2004Pre-mineralisation of starch/polycrapolactone bone tissue engineering scaffolds by a calcium-silicate-based processcitations
- 2003Biomimetic coating of starch based polymeric foams produced by a calcium silicate based methodologycitations
- 2003Bi-composite sandwich moldingscitations
- 2003Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structurescitations
- 2001Sodium silicate gel induced self-mineralization of different compact and porous polymeric structurescitations
Places of action
Organizations | Location | People |
---|
article
Opening new avenues for bioceramics
Abstract
An aging population and lifestyle-related practices increase the incidence of chronic diseases and consequently its costs. The increasing requests for efficient chronic wound care constitute an opportunity for the field of regenerative medicine but, at the same time, it represents a challenge due to the need to limit treatment costs. Calcium-based materials have enormous potential for skin applications, as calcium has an established role in the normal homeostasis of wounded skin and serves as a modulator in keratinocyte proliferation and differentiation. On the other hand, several natural biopolymers, as silk proteins are known for their antioxidant and moisturizing properties as well as a mitogenic influence on mammalian cells. In the present work, a cost-effective method using an oscillatory flow reactor to produce a calcium phosphate/sericin composite system with controlled properties is presented, to be applied in skin wound healing and regeneration. Future perspectives for the produced biomaterials are also addressed.