Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rosiński, Marcin

  • Google
  • 11
  • 34
  • 172

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023Capabilities of Thomson parabola spectrometer in various laser-plasma- and laser-fusion-related experiments3citations
  • 2021Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glass3citations
  • 2018Structure and mechanical properties of TiB 2 /TiC – Ni composites fabricated by pulse plasma sintering method32citations
  • 2011W/steel joint fabrication using the pulse plasma sintering (PPS) method28citations
  • 2010Nanocrystalline WC with non-toxic Fe-Mn binder5citations
  • 2010Properties of WCCo/diamond composites produced PPS method intended for drill bits for machining of building stones9citations
  • 2008Heat Sink Materials Processing by Pulse Plasma Sintering18citations
  • 2006Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Method1citations
  • 2006Nanocrystalline Cu-Al2O3 Composites Sintered by the Pulse Plasma Technique11citations
  • 2006NiAl–Al2O3 composites produced by pulse plasma sintering with the participation of the SHS reaction62citations
  • 2004Phase transformations in ball milled AISI 316L stainless steel powder and the microstructure of the steel obtained by its sinteringcitations

Places of action

Chart of shared publication
Borodziuk, Stefan
1 / 1 shared
Chodukowski, Tomasz
1 / 1 shared
Tchórz, Przemysław
1 / 1 shared
Szymański, Maciej
1 / 3 shared
Choma, Tomasz
1 / 6 shared
Kasonde, Maweja
1 / 1 shared
Leonowicz, Marcin
1 / 26 shared
Błyskun, Piotr
1 / 11 shared
Wróblewski, Rafał
1 / 11 shared
Ostrysz, Mateusz
1 / 1 shared
Pomian, Karolina
1 / 1 shared
Łacisz, Wojciech
1 / 1 shared
Rygier, Tomasz
1 / 1 shared
Jaroszewicz, Jakub
4 / 23 shared
Morończyk, Bartosz
1 / 12 shared
Żrodowski, Łukasz
1 / 12 shared
Cymerman, Konrad
1 / 6 shared
Oleszak, Dariusz
2 / 55 shared
Michalski, Andrzej
9 / 13 shared
Kurzydłowski, Krzysztof
2 / 114 shared
Kruszewski, Mirosław
1 / 16 shared
Ciupiński, Łukasz
1 / 19 shared
Fortuna-Zaleśna, Elżbieta
1 / 3 shared
Siemiaszko, Dariusz
5 / 10 shared
Wachowicz, Joanna
1 / 1 shared
Truszkowski, Tomasz
1 / 1 shared
Płociński, Tomasz
1 / 43 shared
Ciupiński, Łukas
1 / 1 shared
Kurzydłowski, Krzysztof J.
2 / 9 shared
Psoda, M.
1 / 1 shared
Kazior, Jan
1 / 4 shared
Szymańska, Agnieszka
1 / 1 shared
Grabias, Agnieszka
1 / 13 shared
Sikorski, Krzysztof
1 / 5 shared
Chart of publication period
2023
2021
2018
2011
2010
2008
2006
2004

Co-Authors (by relevance)

  • Borodziuk, Stefan
  • Chodukowski, Tomasz
  • Tchórz, Przemysław
  • Szymański, Maciej
  • Choma, Tomasz
  • Kasonde, Maweja
  • Leonowicz, Marcin
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Ostrysz, Mateusz
  • Pomian, Karolina
  • Łacisz, Wojciech
  • Rygier, Tomasz
  • Jaroszewicz, Jakub
  • Morończyk, Bartosz
  • Żrodowski, Łukasz
  • Cymerman, Konrad
  • Oleszak, Dariusz
  • Michalski, Andrzej
  • Kurzydłowski, Krzysztof
  • Kruszewski, Mirosław
  • Ciupiński, Łukasz
  • Fortuna-Zaleśna, Elżbieta
  • Siemiaszko, Dariusz
  • Wachowicz, Joanna
  • Truszkowski, Tomasz
  • Płociński, Tomasz
  • Ciupiński, Łukas
  • Kurzydłowski, Krzysztof J.
  • Psoda, M.
  • Kazior, Jan
  • Szymańska, Agnieszka
  • Grabias, Agnieszka
  • Sikorski, Krzysztof
OrganizationsLocationPeople

article

Heat Sink Materials Processing by Pulse Plasma Sintering

  • Rosiński, Marcin
  • Ciupiński, Łukas
  • Kurzydłowski, Krzysztof J.
  • Siemiaszko, Dariusz
  • Michalski, Andrzej
Abstract

A Pulse Plasma Sintering (PPS) process was employed to manufacture Cu-diamond composites with a 50% volume fraction of each constituent. Pure and Cr (0.8wt.%) alloyed copper matrices were used and commercial diamond powders. The composites were sintered at temperature of 900°C for 20 min and under pressure of 60 MPa. In these sintering conditions diamond becomes thermodynamically unstable. Cu0.8Cr-diamond and Cu-diamond composites with relative densities of 99,7% and 96% respectively were obtained. The thermal conductivity of Cu0.8Cr-diamond composite is equal to 640 W(mK)-1 whereas that of Cu-diamond is 200 W(mK)-1. The high thermal conductivity and relative density of Cu0.8Cr-diamond composite is due to the formation of a thin chromium carbide layer at the Cu-diamond interface.

Topics
  • density
  • impedance spectroscopy
  • chromium
  • carbide
  • composite
  • copper
  • thermal conductivity
  • sintering