People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rotureau, Patricia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2019Estimating the adsorption efficiency of sugar-based surfactants from QSPR modelscitations
- 2017Conformations of n-alkyl-α/β-D-glucopyranoside surfactants : Impact on molecular propertiescitations
- 2016Predictive models for amphiphilic properties of sugar-based surfactants
- 2015How to use QSPR type approaches to predict the properties of green chemicals
- 2015Data analysis of sugar-based surfactant properties : towards quantitative structure property relationships
- 2015Mixture descriptors toward the development of Quantitative Structure-Property Relationship models for the flash points of organic mixturescitations
- 2014Développement de modèles QSPR validés pour la prédiction de la stabilité thermique des peroxydes organiques
- 2013Predicting the physico-chemical properties of chemicals based on QSPR models
- 2013QSPR prediction of physico-chemical properties for REACHcitations
- 2013Prediction of thermal properties of organic peroxides using QSPR models
- 2012Global and local quantitative structure-property relationship models to predict the impact sensitivity of nitro compoundscitations
- 2012Development of validated QSPR models for impact sensitivity of nitroaliphatic compoundscitations
- 2011Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanismscitations
- 2010Excited state properties from ground state DFT descriptors : A QSPR approach for dyescitations
- 2010QSPR modeling of thermal stability of nitroaromatic compounds : DFT vs AM1 calculated descriptorscitations
- 2010Predicting explosibility properties of chemicals from quantitative structure-property relationshipscitations
- 2009On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculationscitations
- 2009Predicting explosibility properties of chemicals from quantitative structure-property relationships
- 2008Vers la prédiction des propriétés d’explosibilité des substances chimiques par les outils de la chimie quantique et les méthodes statistiques QSPR
- 2008Quantitative structure-property relationship studies for predicting explosibility of nitroaromatic compounds
Places of action
Organizations | Location | People |
---|
article
Estimating the adsorption efficiency of sugar-based surfactants from QSPR models
Abstract
Adsorption efficiency, measured as the surfactant concentration at which the surface tension of the aqueous solution decreases by 20 mN/m, characterizes their affinity for surfaces and interfaces, which is crucial for a cost-effective use of surfactants. In this article, the first Quantitative Structure-Property Relationship models to predict this efficiency were proposed based on a dataset of 82 diverse sugar-based surfactants and using different types of molecular descriptors. Finally, an easy-to-use model was evidenced with good predictivity assessed on an external validation set. Moreover, it is based on a series of fragment descriptors accounting for the different structural trends affecting the efficiency of sugar-based surfactants. Due to its predictive capabilities and to the structure-property trends it involves, this model opens perspectives to help the design of new sugar-based surfactants, notably to substitute petroleum-based ones.