People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
V., Mythreyi O.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
booksection
Additive Manufacturing of Nickel-Based Super Alloys for Aero Engine Applications
Abstract
Ni based super alloys are widely used in engine turbines because of their proven performance at high temperatures. Manufacturing these parts by additive manufacturing (AM) methods provides researchers a lot of creative space for complex design to improve efficiency. Powder bed fusion (PBF) and direct energy deposition (DED) are the two most widely-used metal AM methods. Both methods are influenced by the source, parameters, design, and raw material. Selective laser melting is one of the laser-based PBF techniques to create small layer thickness and complex geometry with greater accuracy and properties. The layer-by-layer metal addition generates epitaxial growth and solidification in the built direction. There are different second phases in the Ni-based superalloys. This chapter details the micro-segregation of these particles and its influence on the microstructure, and mechanical properties are dependent on the process influencing parameters, the thermal kinetics during the process, and the post-processing treatments.