Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Elyoussfi, Soukaina

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Thermal Characterization and Improvement of Curing Stage in Resin Transfer Molding Process2citations

Places of action

Chart of shared publication
Echchelh, Adil
1 / 7 shared
Hattabi, Mohamed
1 / 5 shared
Saad, Aouatif
1 / 7 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Echchelh, Adil
  • Hattabi, Mohamed
  • Saad, Aouatif
OrganizationsLocationPeople

booksection

Thermal Characterization and Improvement of Curing Stage in Resin Transfer Molding Process

  • Elyoussfi, Soukaina
  • Echchelh, Adil
  • Hattabi, Mohamed
  • Saad, Aouatif
Abstract

<jats:p>Resin Transfer Molding has become one of the most efficient processes to manufacture composite parts. Among the steps in composite part processing is the curing reaction. In the majority of cases, this reaction is of exothermic nature accompanied by a rise in temperature in the laminate. This leads to the appearance of a thermal gradient. This research aims to study the thermal gradient generated. The objective is to minimize the temperature excess in the composite. By means of a one-dimensional numerical study using the finite differential method, we have showed that the energy balance depends not only on the temperature and on the degree of curing but also on several other factors, namely: the volume fraction of the fibres, the temperature cycle, and the reinforcement thickness. Authors have shown in this study the effect of increasing temperature on the optimization of the curing cycle. The chapter also investigated the effect of thickness variation on temperature distribution in the composite. A comparison of the authors' results with literature achievements showed agreement. </jats:p>

Topics
  • impedance spectroscopy
  • composite
  • resin
  • one-dimensional
  • curing