Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paulo Davim, J.

  • Google
  • 3
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Performance Study of LaPO4-Y2O3 Composite Fabricated by Sol-Gel Process Using Abrasive Waterjet Machiningcitations
  • 2017Optimization of Process Parameters Using Soft Computing Techniques: A Case With Wire Electrical Discharge Machiningcitations
  • 2016Estimation of Mechanical and Tribological Properties of Epoxy-Based Green Compositescitations

Places of action

Chart of shared publication
Slota, Adam
1 / 1 shared
Karnan, Balamurugan
1 / 1 shared
Uthayakumar, M.
1 / 10 shared
Zajac, Jerzy
1 / 1 shared
Kumar, Kaushik
2 / 5 shared
Roy, Supriyo
2 / 2 shared
Bhowmik, Sumit
1 / 2 shared
Chart of publication period
2019
2017
2016

Co-Authors (by relevance)

  • Slota, Adam
  • Karnan, Balamurugan
  • Uthayakumar, M.
  • Zajac, Jerzy
  • Kumar, Kaushik
  • Roy, Supriyo
  • Bhowmik, Sumit
OrganizationsLocationPeople

article

Performance Study of LaPO4-Y2O3 Composite Fabricated by Sol-Gel Process Using Abrasive Waterjet Machining

  • Slota, Adam
  • Karnan, Balamurugan
  • Uthayakumar, M.
  • Paulo Davim, J.
  • Zajac, Jerzy
Abstract

<jats:p>This chapter presents an effective approach to assess the abrasive water jet machining of lanthanum phosphate reinforced with yttrium composite. A novel composite is prepared with the mixture of lanthanum phosphate sol and yttrium nitrate hexalate with a ratio of 80/20 by aqueous sol-gel process. Silicon carbide of 80 mesh size is used as abrasive. The effects of each input parameter of abrasive water jet machining are studied with an objective to improve the material removal rate with reduced kerf angle and surface roughness. The observations show that the jet pressure contributes by 77.6% and 45.15% in determining material removal rate and kerf angle, respectively. Through analysis of variance, an equal contribution of jet pressure (38.18%) and traverse speed (40.97%) on surface roughness is recorded. Microscopic examination shows the internal stress developed by silicon carbide which tends to get plastic deformation over the cut surface. </jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • carbide
  • composite
  • Silicon
  • Lanthanum
  • Yttrium