People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Das, Sanjoy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
booksection
Proper Enhancement and Segmentation of the Overexposed Color Skin Cancer Image
Abstract
Proper enhancement and segmentation of the overexposed color skin cancer images is a great challenging task in medical image processing field. Computer-aided diagnosis (CAD) facilitates quantitative analysis of digital images with a high throughput processing rate. But, analysis of CAD purely depends on the input image quality. Therefore, in this study, overexposed and washed out skin cancer images are enhanced properly with the help of exact hue-saturation-intensity (eHSI) color model and contrast limited adaptive histogram equalization (CLAHE) method which is applied through this model. eHSI color model is hue preserving and gamut problem free. Any gray level image enhancement method can be easily employed for color image through this eHSI model. The segmentation of these enhanced color images has been done by employing one unsupervised clustering approach with the assistance of seven different gray level thresholding methods. Comparison of the segmentation efficiency of gray level thresholding methods has been done in the cases of overexposed as well as for enhanced images.