People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Paulo Davim, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2019Performance Study of LaPO4-Y2O3 Composite Fabricated by Sol-Gel Process Using Abrasive Waterjet Machining
- 2017Optimization of Process Parameters Using Soft Computing Techniques: A Case With Wire Electrical Discharge Machining
- 2016Estimation of Mechanical and Tribological Properties of Epoxy-Based Green Composites
Places of action
Organizations | Location | People |
---|
article
Optimization of Process Parameters Using Soft Computing Techniques: A Case With Wire Electrical Discharge Machining
Abstract
<jats:p>Machining of hard metals and alloys using Conventional machining involves increased demand of time, energy and cost. It causes tool wear resulting in loss of quality of the product. Non-conventional machining, on the other hand produces product with minimum time and at desired level of accuracy. In the present study, EN19 steel was machined using CNC Wire Electrical discharge machining with pre-defined process parameters. Material Removal Rate and Surface roughness were considered as responses for this study. The present optimization problem is single and as well as multi-response. Considering the complexities of this present problem, experimental data were generated and the results were analyzed by using Taguchi, Grey Relational Analysis and Weighted Principal Component Analysis under soft computing approach. Responses variances with the variation of process parameters were thoroughly studied and analyzed; also ‘best optimal values' were identified. The result shows an improvement in responses from mean to optimal values of process parameters. </jats:p>