Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sivakumar, G.

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Detonation sprayed coatings and their tribological performancescitations
  • 2015Composite coatings employing a novel hybrid powder and solution-based plasma spray technique for tribological applicationscitations

Places of action

Chart of shared publication
Joshi, Shrikant V.
2 / 34 shared
Srinivasa Rao, D.
1 / 1 shared
Sen, D.
1 / 4 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Joshi, Shrikant V.
  • Srinivasa Rao, D.
  • Sen, D.
OrganizationsLocationPeople

book

Detonation sprayed coatings and their tribological performances

  • Joshi, Shrikant V.
  • Srinivasa Rao, D.
  • Sivakumar, G.
  • Sen, D.
Abstract

<jats:p>The Detonation Spray Coating (DSC) process is a unique variant among the wide choice of thermal spray processes. The typical functionalities of DSC coatings include wear and corrosion resistance, elevated temperature oxidation resistance, thermal barrier, insulative/conductive, abradable, lubricious surface, etc. Among the coatings for wear resistance, the cermet coatings based on WC–Co and Cr3C2–NiCr are the most popular materials of choice and contribute to bulk of the utilization by the industry towards wear resistance. Notwithstanding the above materials, alternative materials involving modifications in both hard and binder phases like TiMo (CN)–NiCo, WC-CrC-Ni, WC-Co-Cr, WC-Ni, Cr3C2-Ni, Cr3C2-Inconel, etc. exhibit great promise towards tribological applications under diverse wear modes. This chapter on the tribological characteristics of the detonation sprayed coatings provides a comprehensive overview on the characteristics of various cermet coatings generated at varied process conditions and its influence on the tribological properties under abrasive, sliding, and erosive wear modes. </jats:p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • phase
  • wear resistance
  • differential scanning calorimetry
  • spray coating