People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dhawan, V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
book
Predicting drilling forces and delamination in GFRP laminates using Fuzzy logic
Abstract
<jats:p>Drilling of fiber reinforced plastics is necessary in order to assemble complex/intricate composite products. Drilling induced damage leads to high percentage of part rejection and reduced product efficiency and life. The thrust force and torque have been found to be the important factors influencing damage. In the present research endeavor, an attempt has been made to develop a fuzzy rule based model for predicting thrust force, torque and drilling induced delamination during drilling of glass fiber reinforced epoxy plastics (GFREP). The work piece material, drill geometry, drill diameter, feed and cutting speed have been considered as the five input parameters. Four types of solid carbide drills namely 8 facet, 4 facet, parabolic and jodrill of 4 mm and 8 mm size were used to make holes in UD-GFREP and { (0/90) /0]s GFREP laminates at three different levels of speed and feed. The results of the predictive model have been found to be in good agreement with experimental values. </jats:p>