Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rebaï, Tarek

  • Google
  • 1
  • 6
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016ELABORATION AND EVALUATION OF A COMPOSITE BONE SUBSTITUTE BASED ON β-TCP/DCPD AND PHBV, PRELIMINARY RESULTS7citations

Places of action

Chart of shared publication
Smida, Mahmoud
1 / 1 shared
Cheikh, Ridha Ben
1 / 3 shared
Trimeche, Monia
1 / 1 shared
Oudadess, Hassane
1 / 1 shared
Smaoui, Hichem
1 / 3 shared
Keskes, Hassib
1 / 3 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Smida, Mahmoud
  • Cheikh, Ridha Ben
  • Trimeche, Monia
  • Oudadess, Hassane
  • Smaoui, Hichem
  • Keskes, Hassib
OrganizationsLocationPeople

article

ELABORATION AND EVALUATION OF A COMPOSITE BONE SUBSTITUTE BASED ON β-TCP/DCPD AND PHBV, PRELIMINARY RESULTS

  • Rebaï, Tarek
  • Smida, Mahmoud
  • Cheikh, Ridha Ben
  • Trimeche, Monia
  • Oudadess, Hassane
  • Smaoui, Hichem
  • Keskes, Hassib
Abstract

<jats:p> Objective: In the present study, we investigate the biological performance of a calcium phosphate ceramics (CPC) bone substitute combined with poly-hydroxybutyrate-co-hydroxyvalerate (PHBV). Materials and Methods: A particulate CPC [45% beta-tricalcium phosphate ([Formula: see text]-TCP) and 55% of dihydrated dicalcium phosphate (DCPD)] was incorporated into a biodegradable copolymer PHBV. Two series of the composite, 1 and 2, with CPC–PHBV weight ratios of (40%–60% and 60%–40%), respectively, were prepared using chloroform for dissolving the polymer and a pressure molding process for shaping the composite samples. After particle size analysis, the two composites were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). In a second step, a 10[Formula: see text]mm bony segmental defect created in the tibias of 20 New Zealand White Rabbits was filled randomly with either composite 1 for group 1 or composite 2 for group 2. There were 10 animals in each group. Clinical, radiological and histological assessments were then carried out to evaluate the biological properties of developed CPC–PHBV composites. Results: For both variants of the developed CPC–PHBV biocomposite, there was evidence of osseous consolidation within three months. An in vivo investigation revealed the biological properties of the biocomposite, namely, biocompatibility, bioactivity, biodegradability and osteoconductivity. The morphological characteristics, granule size and chemical composition, were indeed found to be favorable for osseous cell development. This study likewise showed lower mortality for the variant with weight ratio (40%CPC–60%PHBV). Conclusion: An in vivo investigation revealed that the new biomaterial composed of CPC and PHBV exhibits manifest osteoconductivity and bioactivity with better degradation kinetics than the CPC. Moreover, the variant with 40%CPC/60%PHBV appeared more resistant to infection than the 60%CPC/40%PHBV which is an indicator of biocompatibility. </jats:p>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • composite
  • chemical composition
  • defect
  • Energy-dispersive X-ray spectroscopy
  • ceramic
  • Calcium
  • copolymer
  • spectrometry
  • biocompatibility
  • dissolving
  • bioactivity