Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Neut, Joost Van Der

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Up-Down Wavefields Reconstruction in Boreholes Using Single-Component Data1citations

Places of action

Chart of shared publication
Arntsen, B.
1 / 2 shared
Liu, Y.
1 / 99 shared
Wapenaar, Kees
1 / 4 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Arntsen, B.
  • Liu, Y.
  • Wapenaar, Kees
OrganizationsLocationPeople

document

Up-Down Wavefields Reconstruction in Boreholes Using Single-Component Data

  • Arntsen, B.
  • Neut, Joost Van Der
  • Liu, Y.
  • Wapenaar, Kees
Abstract

A standard procedure in processing vertical seismic profile (VSP) data is the separation of up-and downgoing wavefields. We show that the up-down wavefields in boreholes can be reconstructed using only singlecomponent borehole data, given that a full set of surface reflection data is also available. No medium parameters are required. The method is wave-equation based for a general inhomogeneous lossless medium with moderately curved interfaces. It relies on a focusing wavefield from the Marchenko method, which gives the recipe for finding this wavefield that satisfies certain focusing conditions in a reference medium. The up-down wavefields are then reconstructed at borehole positions using this focusing wavefields and the surface reflection response. We show that the method is applicable to boreholes with any general orientation. The requirement is that the source positions in the surface data are regularized to be the same as those in the borehole data, and that source deconvolution and surface multiple removal are applied for the surface data. Numerical results from a field in the North Sea are shown, and three different borehole geometries (horizontal, deviated and vertical) are tested. The result shows that the reconstructed up-down wavefields agree well with those by conventional separation methods.

Topics
  • impedance spectroscopy
  • surface