Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Egya, D.

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Assessing the Validity and Limitations of Dual-porosity Models Using Geological Well Testing for Fractured Formations5citations

Places of action

Chart of shared publication
Bisdom, Kevin
1 / 1 shared
Corbett, P.
1 / 1 shared
Bezerra, H.
1 / 1 shared
Bertotti, Giovanni
1 / 1 shared
Geiger, Sebastian
1 / 5 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Bisdom, Kevin
  • Corbett, P.
  • Bezerra, H.
  • Bertotti, Giovanni
  • Geiger, Sebastian
OrganizationsLocationPeople

document

Assessing the Validity and Limitations of Dual-porosity Models Using Geological Well Testing for Fractured Formations

  • Bisdom, Kevin
  • Egya, D.
  • Corbett, P.
  • Bezerra, H.
  • Bertotti, Giovanni
  • Geiger, Sebastian
Abstract

Geological well testing is a valuable tool that allows us to improve understanding of pressure transient behaviour in a fractured reservoir. However, not all wells in a fractured reservoir will show pressure transients that are expected for NFRs. Our findings demonstrate that high resolution models with proper grid refinement around the wells and fractures are required to model pressure transient behaviour adequately and produce a physically meaningful wellbore response for a fractured reservoir. The key concept for interpreting well test data from fractured reservoirs is the dual-porosity model. This model, originally developed by Warren and Root (1963) has been the industry standard for modelling NFRs and interpreting well-test data from NFRs for more than 50 years. Although there are a number of factors impacting the exact shape of the pressure transients, our results suggest that observing the classical “V-shape” in the pressure derivative, as expected from a dual-porosity model may be an exception, rather than a rule in NFR, even for well-connected fracture networks. Our work quantifies when and why the assumptions inherent to the dual-porosity model break down when interpreting well-test data from NFR.

Topics
  • impedance spectroscopy
  • porosity