Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kampman, N.

  • Google
  • 1
  • 8
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Shale porosity - What can we learn from different methods?8citations

Places of action

Chart of shared publication
Bertier, Pieter
1 / 2 shared
Pipich, V.
1 / 7 shared
Busch, Andreas
1 / 5 shared
Feoktystov, A.
1 / 2 shared
Coorn, A.
1 / 1 shared
Schweinar, K.
1 / 8 shared
Amann-Hildenbrand, A.
1 / 1 shared
Leu, L.
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Bertier, Pieter
  • Pipich, V.
  • Busch, Andreas
  • Feoktystov, A.
  • Coorn, A.
  • Schweinar, K.
  • Amann-Hildenbrand, A.
  • Leu, L.
OrganizationsLocationPeople

document

Shale porosity - What can we learn from different methods?

  • Bertier, Pieter
  • Pipich, V.
  • Busch, Andreas
  • Feoktystov, A.
  • Coorn, A.
  • Kampman, N.
  • Schweinar, K.
  • Amann-Hildenbrand, A.
  • Leu, L.
Abstract

<p>While the determination of porosity on sandstones is well established, porosities determined on shales are much less straightforward due to limited coring or inadequate pore preservation. Porosity in shale has an important control on many petrophysical, geomechanical and geochemical parameters of shales. Most of the porosity in shales is associated with small pore throat sizes, ranging in diameter from few up to about 100 nm. Pore throat sizes in carbonate or sandstone reservoir rocks are typically determined using mercury injection porosimetry (MIP). It is however well understood that MIP on shales underestimates porosity due to its limited accessibility. It is well known that using different methods for determining shale porosity results in different porosity values which is due to the different accessibility. Nonetheless, porosity is generally used as an absolute, intrinsic parameter without considering the method for determination. To address this issue we compare porosity, specific surface areas and pore volume distributions from fluid invasion and radiation methods on a total of 14 different Opalinus Clay samples recovered from the shaly facies at the Mont Terri underground laboratory in St. Ursanne, Switzerland.</p>

Topics
  • impedance spectroscopy
  • pore
  • surface
  • laser emission spectroscopy
  • porosity
  • porosimetry
  • Mercury