People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gonzalez, P. Herrasti
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
The corrosion behaviour of nanograined metals and alloys
Abstract
There has been considerable interest in the properties of nanocrystalline materials over the last decade. Such materials include metals and alloys with a crystal size within the order of 1 to 100 nm. The interest arises due to the substantial differences in electrical, optical and magnetic properties and also due to their high adsorption capability and chemical reactivity compared to their larger grained counterparts. In this paper, the corrosion of nanocrystalline metals and alloys is investigated and compared to the corrosion of microcrystalline materials having a similar composition. The focus is on the corrosion of nickel, copper, cobalt and iron alloys. Key aspects of different corrosion behaviour such grain boundaries and size are identified