People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sokal, Aliaksei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Phosphate Ceramics with Silver Nanoparticles for Electromagnetic Shielding Applicationscitations
- 2022Phosphate bonded CoFe<sub>2</sub>O<sub>4</sub>–BaTiO<sub>3</sub> layered structures: Dielectric relaxations and magnetoelectric couplingcitations
- 20210.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Propertiescitations
- 2020The Phosphate-Based Composite Materials Filled with Nano-Sized BaTiO3 and Fe3O4: Toward the Unfired Multiferroic Materialscitations
- 2019Synergy Effects in Electromagnetic Properties of Phosphate Ceramics with Silicon Carbide Whiskers and Carbon Nanotubescitations
Places of action
Organizations | Location | People |
---|
article
Phosphate bonded CoFe<sub>2</sub>O<sub>4</sub>–BaTiO<sub>3</sub> layered structures: Dielectric relaxations and magnetoelectric coupling
Abstract
<jats:p>Multilayered phosphate bonded CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>–BaTiO<jats:sub>3</jats:sub>–CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> (CBC) and BaTiO<jats:sub>3</jats:sub>–CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>–BaTiO<jats:sub>3</jats:sub> (BCB) multiferroic structures were formed by means of uniaxial pressing. The dielectric properties were studied in 20 Hz – 1 GHz frequency and 120–500 K temperature ranges. The complex dielectric permittivity is 15–0.17i for CBC and 22–0.04i for BCB, it is temperature- and frequency-independent below 250 K. At higher temperatures, strong dispersion appeared governed by the Maxwell–Wagner relaxation. Such behaviour is determined by the 2–2 connectivity of the sample. The highest direct magnetoelectric coupling coefficient was found for the BaTiO<jats:sub>3</jats:sub>–CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>–BaTiO<jats:sub>3</jats:sub> structure of 0.2 mVOe<jats:sup>–1</jats:sup>cm<jats:sup>–1</jats:sup>.</jats:p>