People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kalendra, Vidmantas
Vilnius University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Effect of Particle Size on the Origin of Electromechanical Response in BaTiO 3 /PDMS Nanogeneratorscitations
- 2022Investigation of dielectric and magnetic properties of AL-800 ferritecitations
- 2022Origin of Relaxor Behavior in Barium‐Titanate‐Based Lead‐Free Perovskitescitations
- 2022Mixology of MA1- xEAxPbI3Hybrid Perovskitescitations
- 2022Phosphate bonded CoFe<sub>2</sub>O<sub>4</sub>–BaTiO<sub>3</sub> layered structures: Dielectric relaxations and magnetoelectric couplingcitations
- 2021Origin of Relaxor Behavior in Barium-Titanate-Based Lead-Free Perovskitescitations
- 2020Suppression of phase transitions and glass phase signatures in mixed cation halide perovskitescitations
- 2008Electrical conductivity of carbon nanotubes and polystyrene compositescitations
Places of action
Organizations | Location | People |
---|
article
Phosphate bonded CoFe<sub>2</sub>O<sub>4</sub>–BaTiO<sub>3</sub> layered structures: Dielectric relaxations and magnetoelectric coupling
Abstract
<jats:p>Multilayered phosphate bonded CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>–BaTiO<jats:sub>3</jats:sub>–CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> (CBC) and BaTiO<jats:sub>3</jats:sub>–CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>–BaTiO<jats:sub>3</jats:sub> (BCB) multiferroic structures were formed by means of uniaxial pressing. The dielectric properties were studied in 20 Hz – 1 GHz frequency and 120–500 K temperature ranges. The complex dielectric permittivity is 15–0.17i for CBC and 22–0.04i for BCB, it is temperature- and frequency-independent below 250 K. At higher temperatures, strong dispersion appeared governed by the Maxwell–Wagner relaxation. Such behaviour is determined by the 2–2 connectivity of the sample. The highest direct magnetoelectric coupling coefficient was found for the BaTiO<jats:sub>3</jats:sub>–CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>–BaTiO<jats:sub>3</jats:sub> structure of 0.2 mVOe<jats:sup>–1</jats:sup>cm<jats:sup>–1</jats:sup>.</jats:p>