Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

John Blesswin, A.

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Secure multimedia communication: advanced asymmetric key authentication with grayscale visual cryptography2citations

Places of action

Chart of shared publication
Karthick, T.
1 / 3 shared
Vairagar, Shubhangi
1 / 1 shared
Adagale, Sushadevi
1 / 1 shared
Selva Mary, G.
1 / 1 shared
Liu, Tao
1 / 11 shared
Karunya, Catherine Esther
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Karthick, T.
  • Vairagar, Shubhangi
  • Adagale, Sushadevi
  • Selva Mary, G.
  • Liu, Tao
  • Karunya, Catherine Esther
OrganizationsLocationPeople

article

Secure multimedia communication: advanced asymmetric key authentication with grayscale visual cryptography

  • Karthick, T.
  • Vairagar, Shubhangi
  • Adagale, Sushadevi
  • John Blesswin, A.
  • Selva Mary, G.
  • Liu, Tao
  • Karunya, Catherine Esther
Abstract

<jats:p xml:lang="fr">&lt;abstract&gt;&lt;p&gt;The secure authentication of user data is crucial in various sectors, including digital banking, medical applications and e-governance, especially for images. Secure communication protects against data tampering and forgery, thereby bolstering the foundation for informed decision-making, whether managing traffic, enhancing public safety, or monitoring environmental conditions. Conventional visual cryptographic protocols offer solutions, particularly for color images, though they grapple with challenges such as high computational demands and reliance on multiple cover images. Additionally, they often require third-party authorization to verify the image integrity. On the other hand, visual cryptography offers a streamlined approach. It divides images into shares, where each pixel represented uniquely, thus allowing visual decryption without complex computations. The optimized multi-tiered authentication protocol (OMTAP), which is integrated with the visual sharing scheme (VSS), takes secure image sharing to the next level. It reduces share count, prioritizes image fidelity and transmission security, and introduces the self-verification of decrypted image integrity through asymmetric key matrix generators, thus eliminating external validation. Rigorous testing has confirmed OMTAP's robustness and broad applicability, thereby ensuring that decrypted images maintain their quality with a peak signal-to-noise ratio (PSNR) of 40 dB and full integrity at the receiver's end.&lt;/p&gt;&lt;/abstract&gt;</jats:p>

Topics
  • impedance spectroscopy