Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hossain, Mohammad Alamgir

  • Google
  • 2
  • 9
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Pandemic disease detection through wireless communication using infrared image based on deep learning13citations
  • 2020Effect of annealing on specific magnetization of Fe-Cr-Nb-Cu-Si-B with the partial replacement of Fe by chromium1citations

Places of action

Chart of shared publication
Abdelhag, Mohammed Eltahir
1 / 1 shared
Elnaim, Bushra Mohamed Elamin
1 / 1 shared
Jeribi, Fathe
1 / 1 shared
Alhameed, Mohammed
1 / 1 shared
Saha, D. K.
1 / 5 shared
Sikder, S. S.
1 / 6 shared
Iqbal, M. Zashed
1 / 1 shared
Gafur, M. A.
1 / 9 shared
Mahmud, Md Sultan
1 / 2 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Abdelhag, Mohammed Eltahir
  • Elnaim, Bushra Mohamed Elamin
  • Jeribi, Fathe
  • Alhameed, Mohammed
  • Saha, D. K.
  • Sikder, S. S.
  • Iqbal, M. Zashed
  • Gafur, M. A.
  • Mahmud, Md Sultan
OrganizationsLocationPeople

article

Pandemic disease detection through wireless communication using infrared image based on deep learning

  • Abdelhag, Mohammed Eltahir
  • Elnaim, Bushra Mohamed Elamin
  • Jeribi, Fathe
  • Alhameed, Mohammed
  • Hossain, Mohammad Alamgir
Abstract

<jats:p xml:lang="fr">&lt;abstract&gt;&lt;p&gt;Rapid diagnosis to test diseases, such as COVID-19, is a significant issue. It is a routine virus test in a reverse transcriptase-polymerase chain reaction. However, a test like this takes longer to complete because it follows the serial testing method, and there is a high chance of a false-negative ratio (FNR). Moreover, there arises a deficiency of R.T.–PCR test kits. Therefore, alternative procedures for a quick and accurate diagnosis of patients are urgently needed to deal with these pandemics. The infrared image is self-sufficient for detecting these diseases by measuring the temperature at the initial stage. C.T. scans and other pathological tests are valuable aspects of evaluating a patient with a suspected pandemic infection. However, a patient's radiological findings may not be identified initially. Therefore, we have included an Artificial Intelligence (A.I.) algorithm-based Machine Intelligence (MI) system in this proposal to combine C.T. scan findings with all other tests, symptoms, and history to quickly diagnose a patient with a positive symptom of current and future pandemic diseases. Initially, the system will collect information by an infrared camera of the patient's facial regions to measure temperature, keep it as a record, and complete further actions. We divided the face into eight classes and twelve regions for temperature measurement. A database named patient-info-mask is maintained. While collecting sample data, we incorporate a wireless network using a cloudlets server to make processing more accessible with minimal infrastructure. The system will use deep learning approaches. We propose convolution neural networks (CNN) to cross-verify the collected data. For better results, we incorporated tenfold cross-verification into the synthesis method. As a result, our new way of estimating became more accurate and efficient. We achieved 3.29% greater accuracy by incorporating the "decision tree level synthesis method" and "ten-folded-validation method". It proves the robustness of our proposed method.&lt;/p&gt;&lt;/abstract&gt;</jats:p>

Topics
  • impedance spectroscopy