Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kukharskii, Aleksandr V.

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Recycling glass fiber-reinforced plastic in asphalt concrete production1citations

Places of action

Chart of shared publication
Abaimov, Sergey G.
1 / 11 shared
Lomov, Stepan V.
1 / 44 shared
Shiverskii, Aleksei V.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Abaimov, Sergey G.
  • Lomov, Stepan V.
  • Shiverskii, Aleksei V.
OrganizationsLocationPeople

article

Recycling glass fiber-reinforced plastic in asphalt concrete production

  • Abaimov, Sergey G.
  • Lomov, Stepan V.
  • Kukharskii, Aleksandr V.
  • Shiverskii, Aleksei V.
Abstract

<jats:p xml:lang="fr">&lt;abstract&gt; &lt;p&gt;Glass fiber-reinforced plastics (GFRP) have been produced in large quantities for over half a century and nowadays their waste has become a problem worldwide. Their recycling is difficult because they are predominantly manufactured from thermosetting matrices that are not suitable for secondary processing. Only few technologies are able to target full-scale utilization of residual mechanical performance at recycling, with the replacement of gravel in asphalt concrete being one of them. The possibility of introducing crushed GFRP (GFRP crumb) into asphalt concrete and its impact on mechanical characteristics have been investigated in our study. As the source of GFRP, road noise-protection fence was chosen due to large quantities of its waste accumulated in urban economy. Several approaches to produce crumbs were attempted with only shredding being successful. The GFRP crumb has provided excellent mechanical performance of asphalt concrete fabricated by standard routine. In particular, the improvement in compressive modulus was 40%, even under conditions of elevated asphalt concrete temperature at 50 ℃. Besides, introduction of GFRP crumb reduced the overall weight of asphalt concrete mixture, providing further reduction of a carbon footprint. The results obtained indicated that recycling of GFRP waste as replacement of gravel in asphalt concrete provides an economically and environmentally safe solution.&lt;/p&gt; &lt;/abstract&gt;</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • glass
  • glass