Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gradoboev, Alexander

  • Google
  • 1
  • 8
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023The effect of recrystallization annealing on the tungsten surface carbidization in a beam plasma discharge6citations

Places of action

Chart of shared publication
Miniyazov, Arman
1 / 1 shared
Skakov, Mazhyn
1 / 2 shared
Mukhamedova, Nuriya
1 / 4 shared
Baklanov, Victor
1 / 1 shared
Kozhakhmetov, Yernat
1 / 3 shared
Sokolov, Igor
1 / 2 shared
Tulenbergenov, Timur
1 / 1 shared
Bukina, Olga
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Miniyazov, Arman
  • Skakov, Mazhyn
  • Mukhamedova, Nuriya
  • Baklanov, Victor
  • Kozhakhmetov, Yernat
  • Sokolov, Igor
  • Tulenbergenov, Timur
  • Bukina, Olga
OrganizationsLocationPeople

article

The effect of recrystallization annealing on the tungsten surface carbidization in a beam plasma discharge

  • Miniyazov, Arman
  • Skakov, Mazhyn
  • Mukhamedova, Nuriya
  • Baklanov, Victor
  • Kozhakhmetov, Yernat
  • Sokolov, Igor
  • Tulenbergenov, Timur
  • Gradoboev, Alexander
  • Bukina, Olga
Abstract

<jats:p xml:lang="fr">&lt;abstract&gt;&lt;p&gt;Tungsten was chosen as the plasma facing material (PFM) of the ITER divertor. However, graphite and carbon-graphite materials are used as PFM in some research thermonuclear facilities, including the Kazakhstan materials science tokamak. This circumstance determines the interest in continuing the study of the formation of mixed layers under plasma irradiation. This article is devoted to the study of the effect of preliminary recrystallization annealing on the carbidization of the tungsten surface in a beam-plasma discharge (BPD), which is one of the ways to simulate the peripheral plasma of a tokamak. Experiments on preliminary isochoric and isothermal annealing of tungsten samples were carried out in the mode of direct heating of tungsten samples by an electron beam. The carbidization of tungsten samples after annealing was carried out in a methane atmosphere in the BPD at a temperature of 1000 ℃ for a duration of 3600 s. Optical microscopy (OM) and X-ray diffraction were used to analyze the structure of the tungsten surface. It has been established that differences in the structure arising during recrystallization annealing affect the transfer of carbon atoms in the near-surface area of tungsten and the formation of tungsten carbides (WC or W&lt;sub&gt;2&lt;/sub&gt;C).&lt;/p&gt;&lt;/abstract&gt;</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • x-ray diffraction
  • experiment
  • carbide
  • annealing
  • optical microscopy
  • tungsten
  • recrystallization