People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Vinay
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Investigating a Cylindrical Dielectric Resonator Antenna Fabricated with Li<sub>3</sub>MgNbO<sub>5</sub> Microwave Dielectric Ceramiccitations
- 2023Biodegradable Cellulose Nanocomposite Substrate for Recyclable Flexible Printed Electronicscitations
- 2022Unclonable Anti-Counterfeiting Labels Based on Microlens Arrays and Luminescent Microparticlescitations
- 2022A novel SM-Net model to assess the morphological types of Sella Turcica using Lateral Cephalogramcitations
- 2021Rheological behavior of high consistency enzymatically fibrillated cellulose suspensionscitations
- 2018Slot die coating of nanocellulose on paperboard
- 2017Substrate role in coating of microfibrillated cellulose suspensionscitations
- 2017Substrate role in coating of microfibrillated cellulose suspensionscitations
- 2016Influence of nanolatex addition on cellulose nanofiber film propertiescitations
- 2016Rheology of cellulose nanofibers suspensions: boundary driven flowcitations
- 2016Rheology of microfibrillated cellulose suspensions in pressure-driven flowcitations
- 2015Conductivity of PEDOT:PSS on spin-coated and drop cast nanofibrillar cellulose thin filmscitations
- 2014Comparison of nano- and microfibrillated cellulose filmscitations
Places of action
Organizations | Location | People |
---|
article
Rheology of microfibrillated cellulose suspensions in pressure-driven flow
Abstract
Rheology of Microfibrillated Cellulose (MFC) suspensions is useful for designing equipment to transport, mix, or process them. Pressure-driven flow behavior is particularly important for MFC suspensions if they are to be pumped, extruded or coated. Herein, we report use of slot and pipe geometries for determination of MFC suspension rheology and compare the results to boundary-driven flows. MFC flow behavior in a slot with varying gaps was studied at mass concentrations of 1, 2, and 3% and up to shear rates of 100 000 s-1. The suspensions exhibited yield stress and were highly shear thinning (pseudo-plastic) with apparent power law indices of 0.22 – 0.43. The shear thinning behavior can be explained by a microstructural picture in which a non-yielding center plug is surrounded by a yielded layer and a fiber-depleted water rich boundary layer.