People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Csetényi, L. J.
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Mechanical processing of wet stored fly ash for use as a cement component in concrete
- 2024Assessing setting times of cementitious materials using semi‑adiabatic calorimetry
- 2023Portlandcementek Kötési Idejének Meghatározása Féladiabatikus Kalorimetriás Módszerrel
- 2023Fungal biorecovery of cerium as oxalate and carbonate biomineralscitations
- 2022Impact of fly ash production and sourcing changes on chemical and physical aspects of concrete durabilitycitations
- 2022Fungal colonization and biomineralization for bioprotection of concretecitations
- 2022Influence of wet storage on fly ash reactivity and processing for use in concretecitations
- 2022Fungal-induced CaCO3 and SrCO3 precipitationcitations
- 2021Potential of Weathered Blast Furnace Slag for use as an Addition in Concretecitations
- 2020Oil-based mud waste reclamation and utilisation in low-density polyethylene compositescitations
- 2019Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by Aspergillus nigercitations
- 2019Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungicitations
- 2017Evaluation of Fly Ash Reactivity Potential Using a Lime Consumption Testcitations
- 2016Abrasion resistance of sustainable green concrete containing waste tire rubber particlescitations
- 2016Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixturescitations
- 2015Influence of Portland cement characteristics on air-entrainment in fly ash concretecitations
- 2015Sustainable use of marble slurry in concretecitations
- 2015Durability studies on concrete containing wollastonitecitations
- 2013Mechanical and durability studies on concrete containing wollastonite-fly ash combinationcitations
- 2013Evaluating Test Methods for Rapidly Assessing Fly Ash Reactivity for Use in Concrete
- 2010Mechanisms of sulfate heave prevention in lime stabilized clays through pozzolanic additionscitations
- 2003Alkali activation of PFA
- 2002Effect of potassium on setting times of borate admixed cement pastes
- 2001Phase equilibrium study in the CaO-K2O-B2O3-H2O system at 25°Ccitations
Places of action
Organizations | Location | People |
---|
document
Mechanisms of sulfate heave prevention in lime stabilized clays through pozzolanic additions
Abstract
<p>Stabilizing sulfate-bearing clay soils with lime can lead to heave problems through the formation of expansive minerals such as ettringite, and cause damage to supported structures. Adding ground granulated blastfurnace slag (ggbs) before compaction has been noted to contribute to strength development and to reduce swelling of the stabilized soil. Limited availability of ggbs in certain geographical areas means that alternative materials may be needed for this role. A potential candidate for this is fly ash, which has long-term reactivity and a track record in mitigating sulfate swelling in other types of construction, e.g. concrete and grout. A research project was therefore initiated to examine this. A series of clay soils with potential for sulfate heave were investigated using 3% lime and various percentages of fly ash and ggbs. Volumetric swelling tests were carried out on various mixes and it was found that, with increasing levels of fly ash, the swelling of soils gradually reduced. To explore the underlying mechanisms, porosity and mineralogical phase development testing were carried out. Mercury Intrusion Porosimetry results indicate that there is a relationship between the extra porosity introduced by fly ash or ggbs and the observed reduction in swelling, while levels of ettringite formation were generally similar for the range of combinations tested. This supports the hypothesis that provision of space for the formation of expansive products is a principal mechanism by which these materials minimise heave.</p>