People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Freissinet, Caroline
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Evaluation of the Interference of Tenax®TA Adsorbent with Dimethylformamide Dimethyl Acetal Reagent for Gas Chromatography-Dragonfly Mass Spectrometry and Future Gas Chromatography-Mass Spectrometry in situ Analysis.citations
- 2021Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Landercitations
- 2021Gas Chromatograph Mass Spectrometry Performance of the Mars Organic Molecule Analyzer on the ExoMars Rover
- 2019Reply to Comment by F. Kenig, L. Chou, and D. J. Wardrop on “Evaluation of the Tenax Trap in the Sample Analysis at Mars Instrument Suite on the Curiosity Rover as a Potential Hydrocarbon Source for Chlorinated Organics Detected in Gale Crater” by Miller et al., 2015citations
Places of action
Organizations | Location | People |
---|
article
Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander
Abstract
<jats:title>Abstract</jats:title><jats:p>NASA’s Dragonfly mission will send a rotorcraft lander to the surface of Titan in the mid-2030s. Dragonfly's science themes include investigation of Titan’s prebiotic chemistry, habitability, and potential chemical biosignatures from both water-based “life as we know it” (as might occur in the interior mantle ocean, potential cryovolcanic flows, and/or impact melt deposits) and potential “life, but not as we know it” that might use liquid hydrocarbons as a solvent (within Titan’s lakes, seas, and/or aquifers). Consideration of both of these solvents simultaneously led to our initial landing site in Titan’s equatorial dunes and interdunes to sample organic sediments and water ice, respectively. Ultimately, Dragonfly's traverse target is the 80 km diameter Selk Crater, at 7° N, where we seek previously liquid water that has mixed with surface organics. Our science goals include determining how far prebiotic chemistry has progressed on Titan and what molecules and elements might be available for such chemistry. We will also determine the role of Titan’s tropical deserts in the global methane cycle. We will investigate the processes and processing rates that modify Titan’s surface geology and constrain how and where organics and liquid water can mix on and within Titan. Importantly, we will search for chemical biosignatures indicative of past or extant biological processes. As such, Dragonfly, along with Perseverance, is the first NASA mission to explicitly incorporate the search for signs of life into its mission goals since the Viking landers in 1976.</jats:p>