Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oba, Yasuhiro

  • Google
  • 3
  • 10
  • 71

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023The spatial distribution of soluble organic matter and their relationship to minerals in the asteroid (162173) Ryugu14citations
  • 2022Diffusion Activation Energy and Desorption Activation Energy for Astrochemically Relevant Species on Water Ice Show No Clear Relation22citations
  • 2021Transmission Electron Microscopy Study of the Morphology of Ices Composed of H<sub>2</sub>O, CO<sub>2</sub>, and CO on Refractory Grains35citations

Places of action

Chart of shared publication
Tachibana, Shogo
2 / 3 shared
Aikawa, Yuri
1 / 1 shared
Shimonishi, Takashi
1 / 3 shared
Nakatani, Naoki
1 / 1 shared
Fujita, Kazuyuki
1 / 1 shared
Nakatsubo, Shunichi
1 / 1 shared
Sirono, Sin-Iti
1 / 1 shared
Yamazaki, Tomoya
1 / 2 shared
Murata, Ken-Ichiro
1 / 1 shared
Okuzumi, Satoshi
1 / 1 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Tachibana, Shogo
  • Aikawa, Yuri
  • Shimonishi, Takashi
  • Nakatani, Naoki
  • Fujita, Kazuyuki
  • Nakatsubo, Shunichi
  • Sirono, Sin-Iti
  • Yamazaki, Tomoya
  • Murata, Ken-Ichiro
  • Okuzumi, Satoshi
OrganizationsLocationPeople

article

Diffusion Activation Energy and Desorption Activation Energy for Astrochemically Relevant Species on Water Ice Show No Clear Relation

  • Aikawa, Yuri
  • Oba, Yasuhiro
Abstract

<jats:title>Abstract</jats:title><jats:p>The activation energies for desorption (<jats:italic>E</jats:italic><jats:sub>des</jats:sub>) and for surface diffusion (<jats:italic>E</jats:italic><jats:sub>sd</jats:sub>) of adsorbed molecules on dust grains are two of the most important parameters for the chemistry in the interstellar medium. Although <jats:italic>E</jats:italic><jats:sub>des</jats:sub> is often measured by laboratory experiments, the measurement of <jats:italic>E</jats:italic><jats:sub>sd</jats:sub> is sparse. Due to the lack of data, astrochemical models usually assume a simple scaling relation, <jats:italic>E</jats:italic><jats:sub>sd</jats:sub> = <jats:italic>f</jats:italic><jats:italic>E</jats:italic><jats:sub>des</jats:sub>, where <jats:italic>f</jats:italic> is a constant, irrespective of the adsorbed species. Here, we experimentally measure <jats:italic>E</jats:italic><jats:sub>sd</jats:sub> for CH<jats:sub>4</jats:sub>, H<jats:sub>2</jats:sub>S, OCS, CH<jats:sub>3</jats:sub>OH, and CH<jats:sub>3</jats:sub>CN on water-ice surfaces using an ultrahigh-vacuum transmission electron microscope. Compiling the measured <jats:italic>E</jats:italic><jats:sub>sd</jats:sub> values and <jats:italic>E</jats:italic><jats:sub>des</jats:sub> values from the literature, we find that the value of <jats:italic>f</jats:italic> ranges from ∼0.2 to ∼0.7, depending on the species. Unless <jats:italic>f</jats:italic> (or <jats:italic>E</jats:italic><jats:sub>sd</jats:sub>) for the majority of species is available, a natural alternative approach for astrochemical models is running multiple simulations, varying <jats:italic>f</jats:italic> for each species randomly. In this approach, ranges of molecular abundances predicted by multiple simulations, rather than abundances predicted by each simulation, are important. We here run 10,000 simulations of astrochemical models of molecular clouds and protostellar envelopes, randomly assigning a value of <jats:italic>f</jats:italic> for each species. In the former case, we identify several key species whose <jats:italic>E</jats:italic><jats:sub>sd</jats:sub> most strongly affects the uncertainties of the model predictions; <jats:italic>E</jats:italic><jats:sub>sd</jats:sub> for those species should be investigated in future laboratory and quantum chemical studies. In the latter case, uncertainties in the <jats:italic>E</jats:italic><jats:sub>sd</jats:sub> of many species contribute to the uncertainties in the model predictions.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • experiment
  • simulation
  • activation